ΟΠ1300 MATHEMATICAL PROGRAMMING (CORE 3)

ΟΠ1300 MATHEMATICAL PROGRAMMING (CORE 3)

Course Information

Πληροφορίες Μαθήματος


Course Category
Course Type
Secretary Code
Semester
Duration
ECTS Units
Sector

Instructor

Undergraduate
Core 3
ΟΠ1300
4th (Spring)
5 hours/week
6
Production Management and Industrial Administration


Kozanidis Georgios

Course Category: Undergraduate
Course Type: Core 3
Secretary Code: ΟΠ1300
Semester: 4th (Spring)
Duration: 5 hours/week
ECTS Units: 6
Sectorς: Production Management and Industrial Administration
Instructor: Κozanidis Georgios

Aim

This course requires an understanding of basic concepts of linear programming and its objective is to introduce the students to the key methodologies of non-linear and dynamic programming. The focus is on understanding various optimization techniques and on learning the theory upon which these techniques rely. After the end of the class, the students will be familiar with the development of the necessary skills for formulating related problems, using advanced tools to solve them, and comparing alternative solutions.

Syllabus
  • Review of linear programming.
  • Introduction to nonlinear programming – Convexity of functions and sets.
  • Problems without constraints.
  • Problems with constraints.
  • Lagrange multipliers – Karush Kuhn
  • Tucker optimality conditions.
  • Dynamic Programming – The Principle of Bellman Optimality conditions.
  • Problems with a finite horizon – Problems with an infinite horizon.
Prerequisite Courses
There are no prerequisite courses. It is recommended that students who are interested in attending the course have completed successfully the following course: Linear Programming.
Literature

Suggested Literature:

  • Βασιλείου Π.Χ., Γεωργίου Α. (1996). Μη Γραμμικές Μέθοδοι Βελτιστοποίησης. Εκδόσεις Ζήτη,
    Θεσσαλονίκη.
  • Λυμπερόπουλος Γ, Ζηλιασκόπουλος Α. (2005). Θεωρία Βελτιστοποίησης. Πανεπιστημιακές Σημειώσεις, Πανεπιστημιακές Εκδόσεις Θεσσαλίας.
  • Ξηρόκωστας Δ. (1999). Επιχειρησιακή Έρευνα ‐ Μη Γραμμικός και Δυναμικός Προγραμματισμός. Εκδόσεις Συμμετρία, Αθήνα.
  • Hillier F.S., Lieberman G.J. (2001). Introduction to Operations Research. McGraw‐Hill.
  • Taha H., (2011). Introduction to Operations Research. Μετάφραση στα ελληνικά, Εκδόσεις Α. Τζιόλα & Υιοί Ο.Ε.
  • Winston W.L., Venkataramanan M.(2002). Introduction to Mathematical Programming. Duxbury Press

Related Academic Journals:

‐ Annals of Operations Research
‐ Computational Optimization and Applications
‐Computers and Industrial Engineering
‐ Computers and Operations Research
‐ Discrete Optimization
‐ Engineering Optimization
‐ European Journal of Industrial Engineering
‐ European Journal of Operational Research
‐ INFORMS Journal on Computing
‐ International Transactions in Operational Research
‐ Journal of Global Optimization
‐ Journal of Industrial and Management Optimization
‐ Journal of Optimization Theory and Applications
‐ Journal of the Operational Research Society
‐ Management Science
‐ Mathematical and Computer Modelling
‐ Mathematical Methods of Operations Research

Teaching Language

Greek

Teaching Methods

Lectures and Practical Exercises

Student Performance Evaluation
Written Final Exams60%
Midterm30%
Homework10%
Workload (in hours)

 

ActivitySemester Workload
Lectures70
Self evaluating exercises30
Autonomous work50
Course Total150