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“The roots of education are bitter, but the fruit is sweet.”          Aristotle

“The secret to success is to know something nobody else knows.”        Aristotle Onassis

“The important thing is not to stop questioning.”          Albert Einstein

“When you are courting a nice girl an hour seems like a second. When you sit on a red-

hot cinder a second seems like an hour. That's relativity.”  Albert Einstein, On relativity

“Don't be afraid to take a big step. You can't cross a chasm in two small jumps.”

David Lloyd George

“To steal ideas from one person is plagiarism, to steal ideas from many is research.”Anon

“Education is the ability to listen to almost anything without losing your temper or your

self-confidence.”  Robert Frost

“The harder you work, the luckier you get.” McAlexander

“We aim above the mark to hit the mark.”                                     Ralph Waldo Emerson

“Even if you are on the right track, you'll get run over if you just sit there.”   Will Rogers

“Success will not lower its standard to us. We must raise our standard to success.”

          Rev. Randall R. McBride, Jr.

“Creative minds have always been known to survive any kind of bad training.”

   Anna Freud

“Knowledge is of two kinds. We know a subject ourselves, or we know where we can

find information upon it.”         Samuel Johnson
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Preface

This dissertation was prepared at the Department of Mechanical, Industrial and

Manufacturing Engineering at Northeastern University between September 1998 and

August 2002, under the supervision of Professor Emanuel Melachrinoudis. The other two

members of my committee were Professor Marius Solomon and Professor Waleed

Meleis.

The involvement in this area of research was motivated by several discussions

with Professor Melachrinoudis who gave me the first flavor of the potential for research

and the interesting applications in which this research can be applied. We decided to

pursue this idea and this led to the work presented in this dissertation. During the last two

years, Professor Solomon got actively involved in the research too, which provided us

valuable support in many ways.

The dissertation consists of several self-contained independent parts. The main

application of this research is presented in a paper that was published in the International

Journal of Transportation Research, Part A: Policy and Practice. The other parts will be

submitted soon but at the present their fate is unknown.

The most important model when dealing with resource allocation applications is

by far the Knapsack Problem. As a result, most of the models developed for this type of

problems depend heavily on the extensive theory that has been developed for the

Knapsack Problem. This is also true for the present work. Many people working with

Knapsack Problems have been fascinated by the work of the famous Dutch lithographic

artist M. C. Escher. Martello and Toth, two of the pioneers in the field used the
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lithography “Relativity” as a cover of their book on Knapsack Problems. Pisinger, a more

recent but definitely as brilliant a researcher, used the woodcut “Smaller and Smaller” to

cover his dissertation. I chose the lithography “Ascending and Descending” (1960) by the

same artist as a cover for mine, to reflect the fact that many times in Knapsack Problems

an appropriate ordering of elements is necessary in order to address the problem under

investigation. This has also been the case with the present work. The following is a small

fragment that appears in the book “M. C. Escher – The Graphic Work” and refers to this

lithography.

“The endless stairs which are the main motif of this picture were taken from an

article by L.S. Roger Penrose in the February, 1958 issue of the British Journal of

Psychology. A rectangular inner courtyard is bounded by a building that is roofed in by a

never ending stairway. The inhabitants of these living-quarters would appear to be

monks, adherents of some unknown sect. Perhaps it is their ritual duty to climb those

stairs for a few hours each day. It would seem that when they get tired they are allowed to

turn about and go downstairs instead of up. Yet both directions, though not without

meaning, are totally useless. Two recalcitrant individuals refuse, for the time being, to

take any part in this exercise. They have no use for it at all, but no doubt sooner or later

they will be brought to see the error of their nonconformity.”

Boston, MA

August 2002
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ABSTRACT

Optimal resource allocation has been a very active area of research in

mathematical programming for many years. The problem arises in a large number of

different situations, with many different forms. As a result, numerous papers have been

published in the related literature, dealing with its various aspects.

The so-called Knapsack Problem is a big family of problems that have been

formulated in order to address the numerous variations of the problem that arise in

practice. The Knapsack Problem has been the basis for most of the resource allocation

models that have been developed. Besides the tremendous theoretical interest that the

problem enjoys, the practical applications in which it can be applied are countless. As a

result, it continues to stimulate the interest of many researchers, in spite of the fact that it

has been studied extensively in the past.

In this dissertation, several variations of this problem, with special constraints,

are addressed. Both discrete and continuous decision variables are considered, depending

on the nature of the activities that these variables represent. These activities (and

therefore the variables representing them too) are partitioned into disjoint sets. A new

special type of constraints called equity constraints is introduced that ensures a certain

balance on the resource amounts allocated to different activity sets. Special constraints

called multiple choice constraints are also included that handle the interactions that arise

between the continuous activities of the problem.

The main application of the problems addressed in this dissertation is in

transportation management for optimal allocation of funds to highway improvements.

The decision variables represent highway improvements that can be applied to the
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highways under consideration. These highways are partitioned into disjoint segments.

Each of the disjoint variable sets corresponds to a set of improvements associated with a

highway segment. The objective is to allocate an available budget in order to optimize

some appropriate measure of effectiveness. The equity constraints are used to keep a

certain balance on the budget amounts allocated to different highway segments.

To the best knowledge of the author, the problems addressed in this dissertation

have not been studied in the past. For each of these problems, original theoretical

groundwork and important properties are developed that provide valuable insight. Then,

based on this theory, efficient algorithms are developed that can be used to obtain the

optimal solution of each problem. Besides analyzing the complexity of each of these

algorithms, computational results are presented that show their behavior and compare

their performance with the performance of commercial software packages that can be

used alternatively. The importance and the sensitivity of the various parameters of each

of the problems addressed is also investigated thoroughly. This provides important

insight that can be very useful in future research. The dissertation concludes with a

discussion on the conclusions reached and on how this work can be extended in the

future.
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“Not everything that can be counted counts, and not everything that counts can be

counted.”          Albert Einstein

“The best way to escape from a problem is to solve it.”  Alan Saporta

“Give me a lever long enough and a fulcrum on which to place it, and I shall move the

world.” Archimedes, Pappus of Alexandria

“The brighter you are, the more you have to learn.”    Don Herold

Chapter 1:

Introduction
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1.1  Optimal Resource Allocation

Optimal resource allocation has been a very active area of research in mathematical

programming for decades. The objective is to distribute a number of limited resources

among a set of activities in order to optimize some appropriate measure of effectiveness.

It is not an overstatement to say that optimal resource allocation is one of the problems

engineers are most often faced with. According to Hillier and Lieberman (2001), the field

of Operations Research was born during World War II in an effort to allocate scarce

resources to the various military operations and to the activities within each of these

operations in an effective manner.

When we think of the term resource in its broad use, it becomes clear that the

problem can arise in a very large number of different situations. In production analysis

for example, the objective is to decide how to utilize the available production facilities in

order to optimize some target objective while not violating the physical constraints

imposed. Another example is encountered in investment analysis where the objective is

to select from a set of proposed alternatives those that will maximize the return from the

utilization of a limited budget. As a result of the large and diverse applicability of the

problem, numerous papers have been published in the related literature, dealing with its

various aspects. This comes also as a result of the vast theoretical interest that the

problem stimulates.
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1.2 The Knapsack Problem

The rapid progress in the area of optimal resource allocation is mostly due to the

development and analysis of the so-called Knapsack Problem. The Knapsack Problem is

a large collection of problems that effectively and lucidly have been used to formulate

most of the resource allocation problems that arise in practice. In its simplest form, the

problem is formulated as follows:

Max  p1x1 + p2x2 +…+ pnxn

    s.t.  c1x1 + c2x2 +…+ cnxn < b

                                                      x1, x2, …, xn  binary

The decision variables x1, x2,…, xn represent the various activities considered for

implementation. Parameter b represents the available amount of resource for the

implementation of these activities. Coefficients pi and ci represent the profit and the cost,

respectively, incurred from the implementation of activity xi. The term “knapsack”

originates from the fact that this can be visualized as the problem of trying to maximize

the total value of a subset of n items inserted in a knapsack without exceeding the

knapsack’s weight capacity, b. In that context, pi and ci represent the value and the weight

of item i, respectively, and xi takes the value 1, if item i is inserted in the knapsack, and 0,

if not.

The above representation is quite general. The decision variables may represent many

different types of entities, such as people appointed to different departments of some

organization, projects considered by some authority, or even production plans in some

manufacturing facility. Similarly, the resource, b, may have numerous representations



Chapter 1:                                                                                                                                        Introduction

21

such as money, time, machines, etc. In this work, the words budget and resource are used

interchangeably to denote this parameter.

The above formulation can be extended in numerous ways. When several resources

b1, b2,…, bk are considered instead of the single resource, b, the Multi-Dimensional

Knapsack Problem arises. In the Bounded Knapsack Problem, each activity can be

selected at most a certain number of times instead of only once. In the Multiple Choice

Knapsack Problem, the activities are partitioned into disjoint sets and at most one activity

from each set can be selected.

The Knapsack Problem is NP-hard (Garey and Johnson, 1979). This means that no

polynomial algorithm has been developed for its solution so far and additionally, that it

seems very unlikely that this will ever become possible. As a result, researchers have

focused on developing efficient algorithms that take advantage of the special structure of

the problem. The published results indicate that this attempt has been very successful and

very promising for the future. This is one of the main reasons that the problem has

attracted the interest of so many theoretical researchers. Three are the most popular

techniques that have been used to find exact solutions to the problem:

•  dynamic programming

•  branch and bound

•  cutting planes

A large number of other techniques have also been used to get approximate solutions to

the problem, such as approximation algorithms, heuristics, etc.

One of the problems addressed in this work is formulated as a linear program. For this

linear knapsack problem, a greedy solution procedure is developed having polynomial
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complexity. The remaining problems are NP-hard. The algorithms developed for those

problems incorporate in some way a branch and bound procedure and their worst case

performance is exponential.

1.3  Problem Formulation

In its general form, the formulation of the problem that includes all the individual

subproblems considered in the various parts of this dissertation is as follows:

The decision variables xki and ykj belong to disjoint sets. The specific set a variable

belongs to is denoted by its first index, k. Set S contains the indexes of all these disjoint

sets of decision variables. For a specific value of k in S, sets Rk and Dk contain the

indexes of the continuous and binary variables, respectively, that belong to set k.

Parameters pki and qkj are called profit coefficients and parameters cki and dkj are called

cost coefficients. In the present work, all these coefficients are positive numbers.

(7)                                               {0,1},         
(6)                                                       0,          
(5)                                                                                

(4)                                   

(3)                                                          ,          

  (2)                                      s.t. 

(1)                                      Max 
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Parameter b (budget or resource) is also a positive quantity, denoting the available

amount of resource for the implementation of the activities represented by the variables

xki and ykj.

In the objective function of the problem, the total profit incurred from the selection of

the decision variables is maximized. The first constraint is a typical resource constraint,

stating that the total amount of resource that can be used for all activities cannot exceed

the available quantity, b. The sum of all continuous variables within each set k is

restricted to at most lk by the set of constraints (3), which are called multiple choice

constraints. The reason these constraints are introduced is illustrated in Chapter 2, where

the specific area of application of the above model is presented. For a given k in

S, ∑∑
∈∈

+
kk Dj

kjkj
Ri

kiki ydxc is the total resource amount allocated to set k. This quantity is

called the cost of set k. The equity constraints, defined by constraints (4) and (5), ensure

that the cost of every set at the optimal solution of the problem belongs to an interval

[L,U] whose width cannot exceed a given value, f. The auxiliary decision variables L and

U are used to denote the two endpoints of this interval. Finally, constraints (6) and (7)

restrict variables xki to nonnegative values and variables ykj to {0,1} values, respectively.

1.4 Motivation of the Research

The research work presented in this dissertation was motivated by the need to

address a number of interesting problems that arise in various application areas and

haven’t been studied in the past. Each of these problems and the context in which it is
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encountered are presented next. This presentation explains in detail how this work was

stimulated.

As it will be explained in Chapter 2, the various problems addressed in this

dissertation can be applied in transportation management for optimal allocation of funds

to highway improvements. The number of different approaches that have appeared in the

related literature for the treatment of this problem is limited. Moreover, only discrete

improvements have been considered in previous papers. Besides these discrete

improvements, however, there are also improvements that can be applied continuously

over a section of a highway. Typical examples are pavement resurfacing or lighting. The

modeling of such improvements cannot be accomplished with discrete variables.

Continuous variables are needed instead.

The present research arose partly from the need for the development of a rational

approach for the treatment of this problem. The incorporation of both continuous and

discrete improvements into the model results in a mixed integer formulation, which is not

very typical. As a result, a number of issues arise from this incorporation that require

investigation. A typical example is the modeling of the interaction that arises between

different improvements.

The present research was also motivated by the linear and integer optimization

theory that has been developed for knapsack type problems. Although the research in this

area is quite rich and continuous, most of it focuses on pure discrete applications of the

problem. As a result, the great majority of the related papers deals with problems in

which only discrete variables are considered. Problems with continuous variables are

usually used as a linear relaxation to their discrete counterparts. In reality, however, there
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are a number of different occasions, where both continuous and discrete variables are

necessary to represent the activities that are present. In that case, a mixed integer

optimization problem arises. The research in this type of problems is quite limited.

In this work, a meaningful representation for the continuous decision variables of

the problem is introduced. Then, the continuous and the discrete variables are combined

in a meaningful mixed integer optimization problem. With the algorithms developed for

these problems, it is also shown how efficient algorithms can be developed for similar

mixed integer problems. The possibilities for research in this direction are numerous.

This work was also motivated by the need to address new optimization problems

with practical applications that haven’t been addressed before. As already mentioned, the

problems addressed in this dissertation have not been investigated in the past. Besides

introducing the general formulation and showing how each of these problems can be

applied in practice, their important properties and efficient algorithms for their solution

are also developed.

Finally, the present work was motivated by the need to address resource

allocation related issues that have not been addressed in the past. One such issue is the

need for equity when allocating resources among disjoint sets of activities. Decision

makers for example, often seek a balance on the resource amounts allocated to different

activity sets. These sets may be associated with different geographical regions, groups of

people, or even departments within the same organization. The previous research on this

subject is very limited. The incorporation of equity constraints raises a number of

interesting theoretical questions such as what is the impact on the objective function

value and on the behavior of the problem.
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1.5 Research Summary

In the present dissertation several special subproblems that arise from the

formulation that was introduced in Section 1.3 are considered. Among others, the

corresponding application is presented and a number of important properties for each of

these problems are developed. Besides focusing on each problem separately, the

similarities and differences that arise between them are also investigated. This is a very

important part of the research because it shows how the theory developed is modified

when moving from one problem to another.

Next, a brief description of each of the problems addressed in this dissertation is

presented. The algorithmic approach adopted is outlined and the results and the

conclusions obtained from the study of each of them are presented. The first of these

problems, introduced next, is very significant for our later algorithmic development. It

provides the groundwork, on which a great part of the theory developed in this

dissertation is based.

1.5.1 The Linear Multiple Choice Knapsack Problem

The problem arises when the binary variables and the equity constraints are

ignored from the model introduced in Section 1.3. It consists of only continuous

variables, partitioned into disjoint sets. The sum of the variables in each set is restricted

to a maximum value, which is specific for each set.

The Linear Multiple Choice Knapsack Problem has been extensively studied in

the past and numerous algorithms have been developed for its solution as reported in the
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related literature. As already pointed out, the main reason this problem is revisited is

because its main structure provides important insight for the theory developed in later

sections of this dissertation.

First, two important properties are presented, which have been the basis for the

development of most algorithms that handle this problem. After presenting some

theoretical results, a slight modification to an existing algorithm for the problem is

presented. This modification was necessary in order to address the needs of the problems

investigated in this dissertation. Some discussion on this modified algorithm follows and

the differences that it has from the original algorithm are pointed out. Some new

properties resulting from the study of this modified algorithm are also developed. These

properties are very important for the theory developed in later chapters.

1.5.2 The 0-1 Mixed Integer Knapsack Problem with Linear Multiple Choice

Constraints

This problem arises when the equity constraints are ignored from the model

introduced in Section 1.3. It consists of both continuous and binary variables, with

multiple choice constraints applied to the continuous variables. The problem involves

both the Linear Multiple Choice Knapsack Problem and the 0-1 Mixed Integer Knapsack

Problem.

Two important propositions are developed, which lead to the construction of an

efficient branch and bound algorithm for this problem. The first one follows from the

properties of its linear programming relaxation. It takes advantage of the special

relationship that this problem has with the Linear Multiple Choice Knapsack Problem.
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The second proposition explores the special relationship between the parent and children

nodes of the branch and bound tree. This result is used to improve the performance of the

algorithm.

Based on the theory developed for this problem, the significant advantages of the

algorithm are presented. The superior performance of the algorithm is demonstrated by

the computational results presented at the end of the corresponding chapter. Some

discussion on the conclusions reached by the analysis of these results is also included.

The chapter ends with a summary of the conclusions obtained. Some comments on

possible extensions of this work are contained in Chapter 8.

1.5.3 The Linear Multiple Choice Knapsack Problem with Equity Constraints

This problem differs from the traditional Linear Multiple Choice Knapsack

Problem in the equity constraints that ensure that the cost of each set belongs to an

interval whose width does not exceed a certain value. In the past, the Linear Multiple

Choice Knapsack Problem has mostly been used as a relaxation to the Binary Multiple

Choice Knapsack Problem. In this work, a new important application in which this linear

problem can be used is presented.

Important theory is developed for this problem and a number of interesting

properties are proven. The similarities and the differences that arise from the

incorporation of the equity constraints are pointed out. Then, based on this theory, an

efficient greedy solution algorithm is developed.

The algorithm consists of two phases. In its first phase, the algorithm finds the

optimal solution to the relaxed problem that results when the equity constraints are
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dropped. In the second phase, the equity constraints are incorporated. Then, starting from

the current solution and while maintaining superoptimality, the algorithm works towards

feasibility until the optimal solution is obtained. This is achieved by successively

decreasing the width of the interval containing the costs of the disjoint variable sets in the

least costly way. As soon as the equity constraints are satisfied, the solution at hand is

optimal.

Besides presenting computational results demonstrating the efficiency of this

algorithm, a number of interesting results obtained from the analysis of the experiments

conducted are also presented. These results provide insight on the significance of the

equity constraints. They show how the incorporation of these constraints affects the

computational effort needed to solve the problem and additionally, what the resulting

impact on the optimal objective function value of the problem is.

1.5.4 The 0-1 Mixed Integer Knapsack Problem with Linear Multiple Choice

and Equity Constraints

This is exactly the problem introduced in Section 1.3. It includes all the individual

subproblems that have been introduced so far, i.e., both binary and continuous variables,

linear multiple choice and equity constraints. As before, the idea is that the decision

variables are partitioned into disjoint sets and the maximum difference between the

resource amounts allocated to any two sets should not exceed a given value.

Two different versions of this problem are considered. In the first one, the interval

containing the optimal costs of the sets is known. In this case we only have to maximize

the total profit, while making sure that the total resource amount used does not exceed the



Chapter 1:                                                                                                                                        Introduction

30

available budget, b, and that the cost of each set belongs to the given interval. The second

version differs from the first one in that this interval is not known. This adds significant

difficulty to the problem. This difficulty results from the fact that this interval now needs

to be identified and becomes evident when we consider the infinite options that exist for

this interval’s exact location.

Based on the special structure of the problem, a branch and bound algorithm for

the first version of the problem is developed. Then, this algorithm is extended to

accommodate the second version of the problem too. Computational results for both of

these algorithms are presented and their performance is compared with that of a

commercial software package that can be used alternatively. The effect of the equity

constraints is also investigated. Finally, the behavior of the two algorithms is studied and

a discussion on how this behavior changes when the main parameters of the problem are

modified is included.

1.6 Contributions of the Research

The present research provides significant contributions to various areas such as

transportation, resource allocation, Knapsack Problems, linear and mixed integer

programming.

The first contribution of this work is in transportation management and becomes

evident with the details for the application of the problem, introduced in the next chapter.

With the present work, a rational model is presented that can be used for addressing the

problem of allocating funds to highway improvements. The formulation is quite general

and can be extended easily. The model is very flexible, since both continuous and
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discrete improvements can be taken into account and different highway segments can

have different choices of improvements. Additionally, a straightforward technique is

presented that can handle the interactions that arise between the continuous

improvements of the model. The introduction of the multiple choice constraints is a result

of the application of this technique.

The second major contribution of this research is in the general area of Knapsack

Problem applications. A specific application is presented in which a continuous variation

of the problem can be used. Then, this is combined with a discrete version of the problem

and it is shown how the resulting mixed integer problem can be used meaningfully. As it

was already mentioned, the research and the published examples in this area are quite

limited.

The third major contribution of this research is in linear and mixed integer

programming and becomes evident from the theory and the solution algorithms

developed. The efficiency of these algorithms is superior to the performance of common

optimization software packages. Therefore, using these algorithms, problems of large size

can be solved faster. Using the developed theory, the performance of these algorithms

could probably be further improved in the future.

Another contribution of the present research is the insight gained from the

analysis of the computational results. The special structure of the various problems is

investigated thoroughly and their behavior is explained from the analysis of these results.

Additionally, the significance of the various parameters of these problems becomes

apparent. For example, the impact resulting from the incorporation of the equity

constraints is investigated.
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1.7 Outline of the Dissertation

The remainder of this dissertation is structured as follows. In Chapter 2 the

transportation management application, in which the problems addressed can be utilized,

is presented in detail. The model’s importance becomes apparent from this presentation.

The model’s assumptions and requirements are also listed and a case study illustrating its

application is presented.

Chapter 3 contains the literature review for all the various parts of this

dissertation. Relevant work that has been done in the past and is used here is summarized.

First, the work that has been published in the transportation literature for optimal

highway improvement project selection is presented. Then, the attention turns to the

theoretical aspect of the problem. A literature review of the work that has been done for

the Knapsack Problem is provided. Then, focus shifts to the Linear Multiple Choice

Knapsack Problem, which is used in many parts of this dissertation. The algorithms that

have been developed both for the continuous and the discrete version of the problem are

presented.

Chapter 4 is engaged with the Linear Multiple Choice Knapsack Problem. First

the fundamental properties of the problem are presented and then an existing algorithm

that can be used for its solution is slightly modified. This is necessary in order to

accommodate the needs of the problems addressed later in this dissertation. Some

discussion on the theoretical aspects of the algorithm follows and the differences that it

has from the original algorithm are pointed out. The chapter concludes with some

additional properties of the problem and a discussion of the related theory.
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In Chapter 5 the 0-1 Mixed Integer Knapsack Problem with Linear Multiple

Choice Constraints is treated. The development of some important propositions leads to

the development of an efficient branch and bound solution algorithm for this problem.

Several computational issues related to this algorithm are discussed and computational

results that demonstrate its efficiency are presented. The chapter ends with the

conclusions obtained from the analysis of these results.

In Chapter 6 the attention turns to the Linear Multiple Choice Knapsack Problem

with Equity Constraints. After introducing the problem, the theory that has been

developed for the traditional Linear Multiple Choice Knapsack Problem is extended.

Some additional properties and an efficient greedy solution algorithm are developed. The

chapter concludes with a discussion on the computational complexity of the algorithm

and the presentation of computational results and the conclusions obtained from their

analysis.

 In Chapter 7 the 0-1 Mixed Integer Knapsack Problem with Linear Multiple

Choice and Equity Constraints is treated. This is the aggregate problem introduced in

Section 1.3. Two versions of the problem are considered and a branch and bound

algorithm for each of them is designed, based on the important theory developed. As

before, several computational issues are discussed and computational results obtained

from computer experimentation are presented and analyzed. Then, the interpretation of

these results and the conclusions obtained are presented.

In Chapter 8 the possible extensions of this research are presented. The various

transportation models that arise from the models presented in this dissertation are

discussed. These models incorporate additional features of the problem. Additional
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knapsack problems arise this way, which are natural extensions of the problems studied

in this dissertation and provide a suitable area for future research. The approaches that

can be taken for tackling these problems are mentioned briefly. Finally, in Chapter 9 the

important results obtained from this work are outlined and the important merits gained

and the interesting conclusions reached from this work are summarized.
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“In the fields of observation chance favors only the prepared mind.” Louis Pasteur

“Education is not the filling of a pail, but the lighting of a fire.”      William Butler Yeats

“Thinking: The talking of the soul with itself.”    Plato

“He who asks a question is a fool for five minutes; he who does not ask a question

remains a fool forever.”        Chinese Proverb

Chapter 2:

The Transportation

Management Application
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2.1 Introduction

Highway improvement programming has been a major concern of transportation

agencies for many years. The involvement of human lives gives to the related problem a

tremendous significance that demands special attention. As a result, a great part of the

federal funding in the United States is directed towards the maintenance and

improvement of the condition of major highways, in an effort to reduce the potential loss

and increase the level of public safety. A total of $100 billion of federal funds were spent

to fix interstate highways and other major roads in the 1990s. As a percentage of the total

federal transportation spending, spending to improve roads and bridges increased

annually from 39% in 1990 to 49% in 1998 (STPP, 2000).

Optimal allocation of funds to highway improvements is a complicated and often

tedious task. The large number of competing alternatives requires a methodology for

prioritizing the recommended projects, so that the return from the utilization of a limited

budget is maximized. Despite the numerous approaches that have appeared in the

literature, the complexity of the problem in association with the difficulty in estimating

some of its primary parameters often result in non-optimal decisions (Donaldson, 1988).

A rational method for the treatment of the problem becomes increasingly necessary, as

indicated by the rapid increase in the number of registered vehicles on the one hand and

the unavoidable deterioration of the highways on the other.

Given a set of highways and a set of recommended improvements for each of

them, the problem is to allocate an available budget among these highways, in order to

optimize some appropriate measure of effectiveness. A commonly used measure of

effectiveness is the reduction in the expected number of accidents, based on the fact that
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the frequency of accidents is directly related to the frequency of highway fatalities and

injuries. Although transportation fatalities declined during the last decade, auto accidents

remain the leading cause of accidental death among Americans and the leading cause of

death overall for people ages 1 to 34 (STPP, 2000). The top goal of the U.S. Department

of Transportation, which appropriates the largest share of the funding for highway

improvements, remains the increase of transportation safety (U.S. DOT, 2001).

2.2 The Highway Improvement Model

All papers in the highway improvement programming literature thus far deal with

discrete improvements. A discrete improvement is associated with a particular

intervention at a specific point of the road, for which we have only two choices,

implementation or not. The smoothing of a dangerous curve or the repair of a bridge are

examples of discrete improvements. The mathematical representation of these

improvements is thus accomplished by binary variables.

In Section 1.3 a new model was introduced that can be used for addressing the

problem of allocating funds to highway improvements. In addition to the commonly used

binary variables, this model includes continuous variables for improvements that can be

implemented continuously over parts of the highways under consideration. For example,

the quality of the pavement can be improved continuously in any subsection of a highway

and therefore it can be categorized as a continuous improvement. The length of the

highway over which a continuous improvement is carried out is represented by a

continuous variable. Interactions that may arise from the implementation of more than
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one continuous improvements on the same part of a highway are explicitly considered as

explained shortly.

For the needs of the model, every highway is divided into segments, each of

which has uniform characteristics. This simply means that the profit and the cost of a

continuous improvement does not change throughout the length of a highway segment.

The cost of a continuous improvement is proportional to the length of the highway over

which it is applied with a constant of proportionality being the unit cost that depends on

the particular improvement. On the other hand, the cost of a discrete improvement is

fixed. The same distinction is made for the profit of a continuous versus a discrete

improvement. Thus, the formulation of Section 1.3 results, in which the following

notation is used:

S = set of indexes of highway segments,

Rk = set of indexes of continuous improvements, considered in segment k,

Dk = set of indexes of discrete improvements, considered in segment k,

pki = unit profit of continuous improvement i of segment k,

cki = unit cost of continuous improvement i of segment k,

qkj = profit of discrete improvement j of segment k,

dkj = cost of discrete improvement j of segment k,

lk = length of segment k,

b = available budget,

xki = length of highway segment k over which continuous improvement i is implemented, 

ykj = binary variable that takes the value 1, if discrete improvement j of segment k is

implemented, and 0, if not.
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The formulation of Section 1.3 is interpreted now in the context of highway

programming. In the objective function (1) the total profit incurred from the

implementation of the considered improvements is maximized. Constraint (2) ensures

that the amount of money spent on all selected improvements will not exceed the

available budget, b. Constraints (3) are called multiple choice constraints; They are

introduced to handle the interactions that arise between continuous improvements as

explained in the next section. Constraints (4) and (5) are the equity constraints. They

ensure that the cost allocated to each highway segment belongs to an interval whose

width is at most f. Constraints (6) restrict the lengths of continuous improvements to

nonnegative values. Finally, constraints (7) restrict variables ykj that represent the

implementation or not of discrete improvements to {0,1} values.

The model can treat several variations of the problem. The user has the flexibility

to choose his/her decision criterion based on both the priorities that he/she sets as well as

the data that are available. Therefore, different factors reflecting the quality of

transportation can be reflected in the objective function. For example, a surrogate

objective of the quality of transportation from the point of view of the motorists could be

the reduction in the total cost incurred to their vehicles through highway improvements.

This cost reduction includes reduction in car wear and tear, reduction in repair expenses

and increase in fuel economy. It is estimated that poor roads cost drivers in U.S.

metropolitan areas alone $5.8 billion per year (STPP, 1998).

The same type of improvement may have different indexes for different highway

segments. This representation is necessary because the same type of improvement may
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have different cost and/or profit coefficients for different highway segments. On the other

hand, it allows different segments to have different choices of continuous improvements.

2.3 The Multiple Choice Constraints

The multiple choice constraints (3) were motivated by the need to model the

interactions that arise between different continuous improvements within the same

segment. In some cases, the cost needed to apply two or more distinct continuous

improvements over the same part of a highway segment may be higher or lower than the

sum of the costs of these improvements considered independently. For example, total cost

can decrease when resources are being shared. In a similar manner, the actual profit from

the application of two or more improvements over the same part of a highway segment

may be lower or higher than the profit computed when these improvements are treated

independently. In general, the combined return is expected to be lower except in the case

of synergy. The procedure described next is used to handle the case that such interactions

are present and motivates the introduction of the multiple choice constraints.

For each combination of continuous improvements within a segment, another

variable is defined that represents the length of this segment over which all these

improvements are applied. The profit and cost of this new variable is equal to the actual

profit and cost incurred when all the improvements that are associated with this variable

are implemented. Suppose that three continuous improvements can be implemented on

highway segment k. Then, the following variables are defined: Variable xk1, xk2 and xk3,

represents the length of highway segment k over which single improvement 1, 2 and 3 is

implemented, respectively. Three combined variables are introduced representing
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segment lengths over which two improvements are implemented, i.e. 1 and 2 (xk4), 1 and

3 (xk5), and 2 and 3 (xk6). Finally, a combined variable is introduced that represents the

segment length over which all three improvements are implemented (xk7). Thus, seven

variables should be used in this case, of which three represent individual improvements

and four represent combined improvements. The sum of all variables cannot exceed the

length of highway segment k.

Conversely, any problem solution should be interpreted appropriately, according

to the definition of the variables. If in the case described above for example, the length of

segment k is 2.7 miles and xk1 = 1.5, xk2 = 1.2, xk4 = 0, then improvements 1 and 2 should

not overlap on this segment, in order to ensure that the length of combined improvements

1 and 2 (xk4) is 0.

The above described technique for the treatment of interactions among continuous

improvements will increase the number of decision variables of the model. Nevertheless,

in practical situations this increase remains manageable, since the number of individual

continuous improvements considered is relatively small. In addition, the algorithms

developed in this dissertation are very efficient in handling continuous variables.

If a segment has m variables representing individual improvements, then the

number of combined variables to be introduced for that segment is

which is simply the total number of i-combinations of these m continuous improvements,

over all the values of i between 2 and m. Thus, if there exist r segments on which N1,...,Nr

∑
=

=







m

i

mm

i
m

2
, 1 - - 2 



Chapter 2:                                                                                   The Transportation Management Application

42

individual continuous improvements are considered, respectively, then the number of

combined variables to be introduced is

where N1 +...+ Nr = N. This brings the total number of continuous variables (individual

and combined) to .r... rNN −++ 2 2 1

2.4 Model Assumptions

A key assumption of the model is that discrete improvements are associated with

different points of a highway. Therefore, no interaction between two discrete

improvements exists. In addition, it is assumed that no interactions between discrete and

continuous improvements exist. This is a reasonable assumption for discrete

improvements that are applied to “idealized” points of a highway. For example, when

considering the improvement of the pavement of a highway segment (continuous

improvement) and the repair of an overhead bridge on that same segment (discrete

improvement), it is reasonable to assume that these two actions will be independent of

each other.

Interactions between continuous improvements are explicitly considered in each

highway segment. For segments in which no interactions exist, we can simply skip the

introduction of combined variables and constrain each of the continuous variables to take

a value that is not larger than the length of the associated segment. In that case, each of
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these variables satisfies alone a constraint of the form xki < lk and thus the model structure

remains unchanged.

In the objective function (1), the profit incurred from the application of a

continuous improvement is proportional to its length. This is a reasonable assumption

that seems to approximate many real life situations. For example, someone would have a

strong point in claiming that the return when two miles of a highway are resurfaced is

twice as big as when one mile is resurfaced. This proportionality assumption seems also

very reasonable for modeling the costs of the continuous improvements, when setup costs

can be ignored. Transportation agencies very often express such costs for continuous

improvements per mile of implementation. Furthermore, this assumption keeps the model

simple, gives the user better understanding of the problem and makes the acquisition of

the necessary data easier. Despite the above arguments, it should be pointed out that this

proportionality assumption may not always be true. When it's not, nonlinear expressions

for the anticipated profit and cost will have to be derived and additional parameters will

have to be estimated.

2.5 Application of the Model

In this section the application of the proposed model is illustrated in a small case

study. Let's assume that a budget of $400,000 is available for the improvement of the

Massachusetts Turnpike (I-90) part between the Allston and Weston exits in the

westward direction. The total reduction in the expected number of accidents is used as the

measure of anticipated profit, based on the fact that the frequency of accidents is directly

related to the frequency of highway fatalities and injuries. The considered section is
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divided into three segments with homogeneous characteristics. The lengths and the

average daily traffic volumes for each of these three segments are shown in Table 2.1

(data obtained from MHD, 1994 and MTA, 1998).

Table 2.1: Characteristics of highway segments of the example

Segment Index Length Avg. Daily Traffic

(miles) (vehicles)

Allston – Newton 1 3.2 89001

Newton-West Newton 2 2.7 99644

West Newton – Weston 3 1.9 97606

A maximum difference of $50,000 is allowed between the budget amounts

allocated to any two of the considered highway segments. Three continuous

improvements (resurfacing, lane widening and shoulder widening) are considered for

each of the three segments. It is assumed that these improvements have the same unit

costs and accident reduction factors in each of the three segments, although in general

this doesn't need to be the case. The notation xki is used for the length (miles) over which

these continuous improvements are implemented, where k is the index of the associated

segment and i is the index defining the type of improvement, with i = 1 corresponding to

resurfacing, i = 2 corresponding to lane widening and i = 3 corresponding to shoulder

widening. The data for each individual improvement as well as for each combination of

them are given in Table 2.2. These data show that the profit and cost for the

implementation of any combination of individual improvements are smaller than the sum

of profits and costs of individual improvements, respectively. The profit of a continuous
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improvement (accidents/mile) is obtained by multiplying its accident reduction factor

(accidents/million vehicles, mile) by the average daily traffic volume (million vehicles).

Table 2.2: Data for the continuous improvements of the highway example

Improvement Continuous Variable Unit Cost Accident Reduction Factor

for segment k = 1, 2, 3 ($/mile) (accidents/million vehicles, mile)

1 xk1 105,000 0.027

2 xk2 42,000 0.065

3 xk3 24,000 0.015

1 and 2 xk4 132,000 0.082

1 and 3 xk5 116,000 0.035

2 and 3 xk6 51,000 0.069

1, 2 and 3 xk7 143,000 0.092

For each of the three segments the following three discrete interventions are also

considered:

1. Smoothing of a steep curve.

2. Improvement at the exit (signing, lighting and lane corrections), and

3. Repair and maintenance of an overhead bridge.

These discrete improvements are represented by binary variables ykj, where k denotes the

index of the segment and j denotes the type of improvement, as before. Their costs and

accident reduction factors are given in Table 2.3. The profit of a discrete improvement

(accidents) is obtained by multiplying its accident reduction factor (accidents/million

vehicles) by the average daily traffic volume (million vehicles).
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Table 2.3: Data for the discrete improvements of the highway example

Binary variable Description Cost Accident Reduction Factor

($) (accidents/million vehicles)

y11 Curve Smoothing 48,000 0.036

y12 Exit Improvement 9,000 0.007

y13 Bridge Improvement 8,000 0.004

y21 Curve Smoothing 32,000 0.011

y22 Exit Improvement 7,000 0.009

y23 Bridge Improvement 8,500 0.007

y31 Curve Smoothing 19,000 0.015

y32 Exit Improvement 8,000 0.003

y33 Bridge Improvement 5,000 0.006

The data in Tables 2.2 and 2.3 are based on results presented by Sinha and Hu

(1985) and Skinner (1985) and were adapted appropriately to reflect the highway system

under consideration. After the necessary processing and scaling of the data, the problem

is formulated as follows according to the formulation of Section 1.3. Note that the

objective function is expressed in 10-3 accidents, the continuous variables in miles and the

budget in units of $105.

Max  2.403x11 + 5.785x12 + 1.335x13 + 7.298x14 + 3.115x15 + 6.141x16 + 8.188x17 +  

         2.69x21 + 6.477x22 + 1.495x23 + 8.17x24 + 3.487x25 + 6.875x26 + 9.167x27 +

         2.635x31 + 6.344x32 + 1.464x33 + 8.004x34 + 3.416x35 + 6.735x36 + 8.98x37 +

         3.204y11 + 0.623y12 + 0.356y13 + 1.096y21 + 0.897y22 + 0.697y23 + 1.464y31 +

         0.293y32 + 0.586y33
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s.t.    1.05x11 + 0.42x12 + 0.24x13 + 1.32x14 + 1.16x15 + 0.51x16 + 1.43x17 +  

         1.05x21 + 0.42x22 + 0.24x23 + 1.32x24 + 1.16x25 + 0.51x26 + 1.43x27 +

         1.05x31 + 0.42x32 + 0.24x33 + 1.32x34 + 1.16x35 + 0.51x36 + 1.43x37 +

         0.48y11 + 0.09y12 + 0.08y13 + 0.32y21 + 0.07y22 + 0.085y23 + 0.19y31 +

         0.08y32 + 0.05y33 < 4

         x11 + x12 + x13 + x14 + x15 + x16 + x17 < 3.2

         x21 + x22 + x23 + x24 + x25 + x26 + x27 < 2.7

         x31 + x32 + x33 + x34 + x35 + x36 + x37 < 1.9

         L < 1.05x11 + 0.42x12 + 0.24x13 + 1.32x14 + 1.16x15 + 0.51x16 + 1.43x17 +

         0.48y11 + 0.09y12 + 0.08y13 < U

         L < 1.05x21 + 0.42x22 + 0.24x23 + 1.32x24 + 1.16x25 + 0.51x26 + 1.43x27 +

         0.32y21 + 0.07y22 + 0.085y23 < U

         L < 1.05x31 + 0.42x32 + 0.24x33 + 1.32x34 + 1.16x35 + 0.51x36 + 1.43x37 +

         0.19y31 + 0.08y32 + 0.05y33 < U

         U – L < 0.5

         xki > 0, k = 1,2,3, i = 1,2,…,7

         ykj 0 {0,1}, k = 1,2,3, j = 1,2,3

The optimal solution of the above problem is: x12 = 3.2, x22 = 0.933, x26 = 1.77, x32

= 1.9, y12 = 1, y13 = 1, y22 = 1, y23 = 1, y31 = 1, y33 = 1, with all the other variables equal to

0. Thus, the optimal decision is to widen the lanes in segments 1, 2 and 3 and to widen

the shoulder for 1.77 miles in segment 2. Additionally, the curve in segment 3, the exits

in segments 1 and 2, and the bridges in segments 1, 2 and 3 should be improved. The
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optimal solution suggests that the recommended improvements will reduce the daily

number of accidents in this section of the Massachusetts Turnpike by 0.05338. According

to this solution, $151,400 should be spent on the first segment, $144,800 on the second

and $103,800 on the third. The maximum difference between the budget amounts

allocated to any two sets is 151,400 - 103,800 = $47,600 which is less than $50,000. In

the following chapters the focus is on algorithmic procedures that can be used for solving

problems like the one above.
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“Success always occurs in private, and failure in full view.”    Anon

“Imagination is more important than knowledge. Knowledge is limited. Imagination

encircles the world.”          Albert Einstein

“Minds are like parachutes; they work best when open.” Lord Thomas Dewar

“Defeat is not the worst of failures. Not to have tried is the true failure.”

          George E. Woodberry

Chapter 3:

Literature Review
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3.1 Introduction

In this chapter, previous work pertaining to all topics addressed in this dissertation

is summarized. First, the published work that deals with the problem of highway

improvement programming and highway project fund allocation is reviewed. Then the

attention turns to the algorithmic portion of the dissertation. A review of the extended

work that has been done in the past for the Knapsack Problem is provided and then the

focus shifts to the published work that deals with the Multiple Choice Knapsack Problem,

which is used extensively in this work.

3.2 Highway Improvement Literature

Typical techniques for highway improvement projects' selection that have been

reported in the transportation literature include dynamic programming (Brown, 1976 and

1980) and incremental benefit-cost analysis approaches (Farid et al., 1994). Sinha et al.

(1981) suggested a procedure where the reduction in the expected number of accidents is

used as the measure of effectiveness and binary variables are utilized to represent the

various improvement alternatives. Following this procedure, the problem is formulated as

a binary integer optimization model. Among others, the paper presents a multi-year

model with the flexibility of carry-over of unspent funds from previous years. A

stochastic version of the model that examines the case in which there are uncertainties in

estimating model parameters is also introduced. Pal and Sinha (1998) extended this work

by considering the effectiveness of the various projects in future years. Their model takes

into account the expected growth in traffic resulting from the implementation of the

recommended projects. As in the paper by Sinha et al. (1981), the problem is formulated
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as a binary integer optimization model where the total crash rate is minimized. Another

binary integer optimization model was used by Melching and Liebman (1988) to address

the problem of allocating railroad maintenance funds. The problem was modeled as a

binary knapsack problem with precedence constraints and solved by an efficient heuristic

after a suitable modification. A brief comparison on the various techniques that can be

used for optimal highway safety funds allocation is presented by Brown et al. (1990).

A common measure of effectiveness, when evaluating highway improvement

alternatives, is the total reduction in the expected number of accidents. Traffic volume

data as well as accident reduction factors for the various types of highway improvements

are necessary for the evaluation of such a measure of effectiveness.

Traffic volumes are usually available in the databases of most local highway

authorities and project costs are more or less readily obtainable from construction

companies. For the acquisition of the accident reduction factors however, more effort is

needed. Someone has to combine personal experience and judgement with results from

appropriate reports analyzing how these factors can be estimated. Sinha and Hu (1985)

discuss an approach on how to evaluate safety impacts of highway projects. They derive

a relationship between accident reduction rate and 14 major highway design elements for

different classes of highways such as interstate and urban arterial. Additionally, they

derive accident reduction factors for combined improvement or maintenance activities

such as rehabilitation and pavement maintenance.

Skinner (1985) presents data that relate typical improvements, such as lane or

shoulder widening, with different types of accidents, such as single vehicle run-off road

and multi-vehicle opposite direction. He also reports the expected reduction in number of
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accidents when combinations of these improvements are implemented. Opiela (1985)

outlines a methodology for developing a set of accident reduction factors. This

methodology consists of several steps, such as establishment of integrated databases and

categorization of situations. Numerous papers elaborate on the effect of single key

highway features on safety. Barbaresso et al. (1982) present a procedure for identifying

and evaluating highway safety projects. An extensive summary of recent research results

on the relationship between accident rates and highway design elements can be found in

FHWA (1997).

3.3 The Knapsack Problem

Most integer programming books contain a section on knapsack problems. See,

for example, Hu (1969), Garfinkel and Nemhauser (1972), Salkin (1975), Taha (1975),

Papadimitriou and Steiglitz (1982), Syslo et al. (1983), Schrijver (1986), Nemhauser and

Wolsey (1988), Pisinger and Toth (1999) and Korte and Vygen (2000). A profound

introduction to the subject is also given by Ibaraki (1987a and 1987b).

In the recent years a large amount of research on knapsack problems has been

published in the literature. Reviews are presented in the following surveys: Salkin and De

Kluyver (1975) present a number of industrial applications and results in transforming

integer linear programs to knapsack problems. Martello and Toth (1979) consider exact

algorithms for the zero-one knapsack problem and their average computational

performance. This study was extended to the other linear knapsack problems and to

approximate algorithms in Martello and Toth (1987). Dudzinski and Walukiewicz (1987)

analyze dual methods for solving Lagrangian and linear programming relaxations.
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Martello and Toth (1990) present an extensive survey on exact and approximate

algorithms for a number of important integer linear problems. The results refer not only

to “classical” knapsack problems, but also to less familiar problems and well-known

problems that are not usually classified in the knapsack area. Lin (1998) presents a large

survey on some well-known non-standard knapsack problems.

The first exact solution for the 0-1 knapsack problem is due to the dynamic

programming theory developed by Bellman (1957). Dantzig (1957) gave an efficient

method to determine the solution to the continuous relaxation of this problem. This also

produced an upper bound on the objective value of the discrete problem that was used in

most of the following studies of the problem. Gilmore and Gomory (1961, 1963, 1965

and 1966) investigated the dynamic programming approach to the knapsack problem and

other knapsack-type problems. Kolesar (1967) experimented with the first branch and

bound algorithm for the problem. The large computer memory and time requirements of

the Kolesar algorithm were greatly reduced by the Greenberg and Hegerich approach

(1970). This approach was further developed and another well-known algorithm of this

period is due to Horowitz and Sahni (1974). Ingargiola and Korsh (1973) presented the

first reduction procedure and Johnson (1974) gave the first polynomial time

approximation scheme for the subset-sum problem. Sahni (1975) combined the greedy

heuristic with enumeration to obtain a polynomial approximation scheme for the

knapsack problem.  Ibarra and Kim (1975) obtained the first fully polynomial time

approximation scheme and Martello and Toth (1977) proposed the first upper bound

dominating the value of the continuous relaxation. The running time of Ibarra and Kim’s

heuristic was improved by Lawler (1979). A different fully polynomial approximation
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scheme for the 0-1 knapsack problem was given by Magazine and Oguz (1981).

Ingargiola and Korsh (1977) presented a reduction algorithm for the bounded knapsack

problem, related to the one in Ingargiola and Korsh (1973) and imbedded it into a branch-

search algorithm related to the one in Greenberg and Hegerich (1970). A different branch

and bound strategy has been proposed by Bulfin et al. (1979). Balas and Zemel (1980)

presented a new approach to solve the problem by sorting, in many cases, only a small

subset of the variables. Other algorithms have been derived by Guignard and Spielberg

(1972), Barr and Ross (1975), Nauss (1976), Zoltners (1978), Lauriere (1978), Suhl

(1978), Veliev and Mamedov (1981), Fayard and Plateau (1982), Martello and Toth

(1988 and 1997), Pisinger (1995b, 1997) and Martello et al. (1999 and 2000). Fayard and

Plateau (1975) and Aittoniemi (1982) give experimental comparisons of some of the

above algorithms. The enumeration of an exponential number of search tree nodes by the

branch and bound algorithms with linear programming relaxations for some families of

knapsack problems is pointed out by Chvatal (1980).

3.4 The Multiple Choice Knapsack Problem

In the study of the multiple choice knapsack problem many algorithms have been

developed specifically for the linear case. Witzgall (1980) discussed a solution approach

to this problem with a minimization objective function and an equality resource

constraint. For the same problem Glover and Klingman (1979) developed a dual Simplex

method and Zemel (1980) proposed a two-phase solution procedure. Johnson and

Padberg (1981) generalized Dantzig’s method (Dantzig, 1963) to solve the linear multiple

choice knapsack problem with inequality resource constraints. Dyer (1984) developed a
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pairing algorithm for the solution to a linear multiple choice knapsack problem and

Dudzinski and Walukiewicz (1984) questioned the appropriateness of neglecting the

reduction phase in Dyer’s solution approach. Zemel (1984) studied a generalized version

of the multiple choice knapsack problem called d-dimensional. Gass and Shao (1985)

considered the same type of linear multiple choice knapsack problem as Johnson and

Padberg and reported a solution approach similar to that proposed by Dyer. Finally, Sarin

and Karwan (1989) considered a linear multiple choice knapsack problem where the

objective was minimized. Table 3.1 summarizes the algorithms that have been developed

for the solution of the Linear Multiple Choice Knapsack Problem.

On the other hand, the Integer Multiple Choice Knapsack Problem is NP-hard,

since the integer knapsack problem is NP-hard too (Garey and Johnson, 1979). Most of

the algorithms that have been developed, utilize the branch and bound procedure to

enforce its solution. Nauss (1978), proposed two Lagrangian relaxation algorithms to

solve the multiple choice integer knapsack problem and incorporated them in the branch

and bound procedure for general IP by Geoffrion and Marsten (1972). Sinha and Zoltners

(1979) proposed an algorithm that starts with the elimination of redundant variables. A

procedure similar to the one by Sinha and Zoltners was redesigned by Armstrong et al.

(1983), specifically for large scale multiple choice knapsack problems. Another branch

and bound procedure was proposed by Dyer et al. (1984) and the Lagrangian relaxation

approach was revisited by Aggarwal et al. (1992). Pisinger (1995a) developed an

algorithm that was based on the minimal core theory (Pisinger, 1997) and Dyer et al.

(1995) developed a hybrid dynamic programming/branch and bound algorithm for the
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problem. A summary of the algorithms for the Integer Multiple Choice Knapsack

Problem is presented in Table 3.2.

Finally, it should be noted that the multiple choice knapsack problem has been

reported in numerous applications, such as capital budgeting (Lorie and Savage, 1955),

line balancing (Kilbridge and Wester, 1962), linking system components (Kolesar, 1966),

fixed charge problems (Jones and Soland, 1969), product pricing (Garfinkel and

Nemhauser, 1972), menu planning (Balintfy et al.,1978), catalogue spacing (Johnson et

al., 1979), sales resource allocation (Zoltners and Sinha, 1980; Sinha and Zoltners, 1982),

multi-item scheduling (Sweeney and Murphy, 1981) and capacitated facility location

problems (Klincewicz and Luss, 1986).
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Table 3.1: Algorithms for the Linear Multiple Choice Knapsack Problem

Authors

(year)

Featured

Technique

Computational

Complexity

Glover and Klingman

(1979)

Specialized dual simplex

method with sensitivity analysis

O[(ΣkεS nk) log ΣkεS nk]

Witzgall

(1980)

Improved dual

simplex method

O[(ΣkεS nk) log ΣkεS nk]

+ O{r[(ΣkεS nk)-r]}

Zemel

(1980)

Reduction and

transformation

O[(ΣkεS nk) log max nk]

+ O(n)

Johnson and Padberg

(1981)

Generalized

Dantzig’s method

O(ΣkεS nk
2)

Dyer

(1984)

Duality

theory

O(ΣkεS nk)

Dudzinski and Walukiewicz

(1984)

Exploitation between the primal

and dual feasible solutions

O[(ΣkεS nk) log max nk]

+ O(r log2 (n/r)]

Zemel

(1984)

LP technique applied

on dual problem

O(ΣkεS nk)

Gass and Shao Jr.

(1985)

Duplex method on

the dual problem

O(ΣkεS nk)

Sarin and Karwan

(1989)

Dual gradient method

using dual simplex pivoting

O(ΣkεS nk)

nk = number of variables in set k, k = 1,2,…,|S|, before the elimination of any dominated variables
n = number of variables after the elimination of dominated variables
r = number of multiple choice constraints (multiple choice sets)
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Table 3.2: Algorithms for the Integer Multiple Choice Knapsack Problem

Authors

(year)

Featured

Technique

Nauss

(1978)

Lagrangian relaxation

branch and bound procedure

Sinha and Zoltners

(1979)

Special ordered sets

branch and bound procedure

Armstrong, Kung, Sinha and Zoltners

(1983)

Branch and bound procedure

for large scale MCKP

Dyer, Kayal and Walker

(1984)

Dual simplex method

branch and bound procedure

Aggarwal, Deo and Sarkar

(1992)

Network duality and Lagrangian

relaxation branch and bound procedure

Pisinger

(1995a)

Minimum core algorithm using dynamic

programming and breadth first search

Dyer, Riha and Walker

(1995)

Hybrid dynamic programming/branch and

bound procedure using Lagrangian duality

for computation of bounds and reduction
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“A person who aims at nothing is sure to hit it.”   Anon

“When the only tool you have is a hammer, you tend to treat everything as if it were a

nail.”     Abraham Harold Maslow

“It's always too early to quit.”          Norman Vincent Peale

“You cannot conceive the many without the one.”    Plato

Chapter 4:

The Linear Multiple

Choice Knapsack Problem
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4.1 Problem Formulation

After ignoring the binary variables and the equity constraints, the problem of

Section 1.3 reduces to the well-known Linear Multiple Choice Knapsack (LMCK)

Problem:

When the decision variables are constrained to binary values and lk =1, for all k,

LMCK reduces to the Binary Multiple Choice Knapsack Problem. The Binary Multiple

Choice Knapsack Problem can be viewed as the problem of trying to maximize the total

value of N objects inserted in a knapsack of capacity b with the additional constraint that

the objects are partitioned into |S| subsets and at most one object per subset can be

selected. In our case all the profit and cost coefficients are positive numbers. Johnson and

Padberg (1981) showed however, that any LMCK with arbitrarily signed coefficients can

be brought to a standard form with positive ones.

So far, LMCK has been mostly used as a relaxation to the Binary Multiple Choice

Knapsack Problem. Following the representation used in this dissertation, the problem

can also be used for optimal fund allocation to disjoint sets of continuous highway

improvements. The multiple choice constraints can be used to handle the interactions that

arise between the continuous improvements of a highway segment as described in

Chapter 2.
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In the following sections an algorithm for LMCK is presented, which is a slight

modification of an existing algorithm by Johnson and Padberg (1981). This modification

was necessary in order to accommodate the needs of the problems addressed later in this

dissertation. Although this algorithm does not have the best performance among all linear

multiple choice knapsack algorithms (Lin, 1998), it is chosen because it can be further

adapted to support the problems that result after the inclusion of the binary variables and

the equity constraints.

4.2 LMCK Properties

Problem LMCK has been widely investigated (Lin, 1998). Most of the solution

algorithms that have been proposed for the problem are based on two fundamental

properties (for the proofs see Chandra et al., 1976, or Sinha and Zoltners, 1979):

Property 4.1: If for some k there are two distinct variables xkh and xkg such that pkh/ckh >

pkg/ckg and pkh > pkg, then there is an optimal solution to LMCK with xkg = 0.

Property 4.2: If for some k there are three distinct variables xkf, xkg and xkh, such that pkf <

pkg < pkh, ckf < ckg < ckh and 
kgkh

kgkh

kfkg

kfkg
cc
pp

cc
pp

−
−

≤
−
−

, then there is an optimal solution to

LMCK with xkg = 0.

The significance of these two properties lies in the fact that they enable us to

eliminate in advance some of the decision variables and reduce the size of the problem.

Variables eliminated by the conditions of Property 4.1 are termed integer dominated;

variables eliminated by the conditions of Property 4.2 are termed convex (LP) dominated

(Armstrong et al., 1983). The variables of a set k can be visualized graphically as points
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on a two-dimensional graph, where the x-axis represents the cost of a variable and the y-

axis its profit, as illustrated in Figure 4.1 (see also Sinha and Zoltners, 1979). By

connecting nondominated variables in this graph a piecewise linear concave function is

defined (NkiNkjNklNkm). This function defines the upper left hull (up to the point with the

highest profit) of all the variables in this set.

                         cki     ckj         ckl                ckm

Figure 4.1: Coefficient space of decision variables within a multiple choice set k

Among others, Johnson and Padberg (1981) introduced an algorithm for LMCK,

which can be viewed as a generalization of Dantzig's method (1963) for the linear

pki

pkj

pkl

    pkm

Nkj

Nki

Nkl

Nkm
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knapsack problem with upper bounded variables. This algorithm was slightly modified to

accommodate the more general structure of our formulation. This algorithm is presented

in the next section followed by a discussion on its important properties.

 4.3 Algorithm LMCK

The algorithm developed for LMCK consists of two steps. In the first step, each

variable is associated with a ratio called the slope of the variable and these ratios are used

to eliminate dominated variables. Next, one variable list Lk for each set k is constructed

by arranging the variables of the set in non-increasing order of their associated slopes.

Then, the variable lists of all sets are merged into a master list, ML. Variables in list ML

are still arranged in non-increasing order of their associated slopes after this merging. In

the second step of the algorithm, budget b is allocated successively to the decision

variables (activities) according to the order they appear in the master list ML, until either

the total budget is spent (scarce budget), or all decision variables (activities) in the master

list are increased to their highest possible levels and there is still money left (surplus

budget). The detailed steps of the algorithm follow along with a brief discussion on its

properties.

Algorithm LMCK

Step 0: Preprocessing

For each multiple choice set k, construct a multiple choice list of variables Lk as follows:

Order the nondominated variables in this set by increasing costs (list will be the same if

variables are ordered by increasing profits). Define the slope of the first variable xki in

each multiple choice list as the ratio pki/cki. For each subsequent variable xkj in the list,
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define its slope as 
kikj

kikj
cc
pp

−
−

, where xki is the variable immediately preceding xkj. While

maintaining all individual multiple choice lists, create a master list ML by merging the

variables of all multiple choice lists in non-increasing order of their associated slopes.

Initialize the objective function value u and the variables in all lists to 0. Let s be the

index denoting the order in which variables appear in ML, s = 1,..., |ML|. Initialize s = 0.

Step 1: Iteration

Step 1.0 Set s = s + 1. If s > |ML|, STOP (there are no remaining variables for increase).

If not, let the sth variable in ML be xkj, and let bres be the budget amount that has not been

allocated yet (budget residual). If all variables in list k are 0, go to Step 1.1. If list k has

exactly one variable xki with a positive value, go to Step 1.2.

Step 1.1 If ckjlk < bres, set xkj = lk, bres = bres - ckjlk, u = u + pkjlk and go to Step 1.0.

If ckjlk > bres, set xkj = bres/ckj, u = u + pkj bres/ckj, bres = 0 and STOP.

Step 1.2 If (ckj - cki)lk < bres, set xkj = lk, xki = 0, bres = bres - (ckj - cki)lk, u = u + (pkj - pki)lk

(variable xki is not eligible to be increased again). Go to Step 1.0.

If (ckj - cki)lk > bres, set xkj = bres/(ckj - cki), xki = lk - xkj, u = u + (pkj - pki)bres/(ckj - cki) , bres =

0 and STOP.             .

4.4 Properties of the Algorithm

The main difference between Algorithm LMCK presented here and the original

algorithm, is the construction of the individual multiple choice lists and master list ML.

These lists are utilized by the algorithms developed in later sections for the solution of

different problems. The optimality of the above algorithm is further discussed in Johnson
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and Padberg (1981) and Pisinger (1995a). The algorithm can be viewed as a

generalization of Dantzig's method for the linear knapsack problem with variables having

upper bounds (Dantzig, 1963). In fact, if each multiple choice set is a singleton, it is

precisely Dantzig's solution method to the problem without special ordered sets.

When the algorithm terminates in Step 1.0, each multiple choice set has exactly

one positive-valued variable. When the algorithm terminates in Step 1.1, variable xkj is

called critical, i.e., xkj is the rightmost variable in ML with a positive value. In this case,

each multiple choice set has at most one positive-valued variable. Finally, when the

algorithm terminates in Step 1.2, variable xkj is also called critical. In the latter case,

multiple choice set k has two positive-valued variables, including the critical, while any

other multiple choice set has at most one positive-valued variable. Every positive-valued

variable that belongs to a multiple choice set other than the one of the critical variable has

a value which is equal to the right hand side of the associated multiple choice constraint.

Note that, in Step 1.2 of the algorithm, if the budget residual is enough, variable xkj will

eventually get a value of lk and variable xki will decrease to 0. As a result, at the time a

variable is considered for increase, each multiple choice list has at most one positive-

valued variable.

The list Lk and the budget amount bk, allocated to set k, determine the optimal

values of the variables xki in this set. Of course, the budget amount allocated to set k

depends on the relative magnitude of the associated slopes of variables belonging to all

sets in the master list ML and it is not known in advance. For the sake of illustration, let's

assume that the budget amount allocated to set k at the optimal solution of the problem is

bk and that the variable list for set k is Lk = {xk2,xk6, xk7}. For small values of bk, i.e., 0 < bk
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< ck2lk, only variable xk2 will have a positive value in set k because it has the highest slope

among all nondominated variables in that set. For bk = ck2lk, xk2 = lk, and the profit from

set k is pk2lk. When bk increases beyond ck2lk, it becomes more profitable for xk6 to

increase while xk2 has to decrease in order to ensure that the sum of the two variables

does not exceed lk. The reason xk6 gradually replaces xk2 is its higher profit (per unit

length). It can be easily shown that the new profit from set k is

)( k2kk
2k6k

2k6k
2k2k lcb

cc
pp

lp −
−
−

+ . Thus, the excess budget amount (bk - ck2lk) is used for

gaining additional profit. It is clear to see now that the associated slope of a variable (xk6)

in the list, represents the incremental profit when this variable is increased in place of the

previous variable (xk2). Eventually, when bk = ck6lk, xk6 = lk and xk2 = 0. If bk is increased

further, xk7 will increase and xk6 will decrease. When bk = ck7lk, there is only one positive-

valued variable, xk7 = lk. Of course, bk cannot be larger than ck7lk and the profit from set k

cannot be larger than pk7lk. As a result, there are at most two positive-valued variables

from a set in the optimal solution. These are (consecutive) variables from the associated

set list and the higher the budget amount allocated to the set, the higher the order

(towards the end) of these variables in the list.

Variables in each multiple choice list are arranged in non-increasing order of their

associated slopes (see also Armstrong et al., 1983). The associated slope of each variable

provides a measure of the incremental profit earned per unit of budget spent, when this

variable is increased. At each iteration, the algorithm selects the variable with the highest

such slope among all variables that haven't been increased yet. For a multiple choice set

with all variables equal to 0, this is the variable xki appearing first in the associated
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multiple choice list, because that variable has the highest pki/cki ratio. For a multiple

choice set with exactly one positive-valued variable xki, this is the variable xkj

immediately succeeding xki in the associated multiple choice list. At first glance, it may

seem counter-intuitive that a variable with an inferior ratio pkj/ckj replaces a variable with

a superior ratio pki/cki. This is justified however by the following reasoning. When

additional funds are available, they can be used to “buy” additional profit, although at a

higher price. An implication of this is that, after the increase of a variable, the next

variable considered for increase from the same set always has a higher profit. Ties in any

part of the algorithm can be broken arbitrarily.

The following proposition provides some insight into Algorithm LMCK. It will be

utilized in subsequent parts of the dissertation.

Proposition 4.1: Increase of any variable in Step 1 of Algorithm LMCK results in a

concurrent increase in both total cost and total profit.

Proof: The validity of the proposition is clear in the case that the variable selected for

increase belongs to a multiple choice set with all variables equal to 0. Let's consider the

case when the variable xkj selected for increase belongs to a multiple choice set with one

positive-valued variable xki. Let ∆l be the amount by which xki is decreased and xkj is

increased. The net change in total profit and total cost is (pkj - pki) ∆l and (ckj - cki) ∆l,

respectively. Both changes are positive, since variables in a multiple choice list are

arranged in increasing order of both their profits and costs.             .
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“Knowing is not enough; we must apply. Willing is not enough; we must do.”

  Johann von Goethe

“Our greatest glory is not in never falling, but in rising every time we fall.”      Confucius

“The foundation of every state is the education of its youth.”         Diogenes

“Cultivation to the mind is as necessary as food to the body.”       Marcus Tullius Cicero

Chapter 5:

The 0-1 Mixed Integer Knapsack Problem

with Linear Multiple Choice Constraints
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5.1 Introduction

In this chapter, the problem that results when the equity constraints are dropped

from the model of Section 1.3 is considered. The formulation of this problem is as

follows:

Conforming to the knapsack problem terminology and trying to avoid confusing

notation, this problem is abbreviated as MIMCK, standing for 0-1 Mixed Integer

Knapsack Problem with Linear Multiple Choice Constraints. The problem involves both

the general mixed integer knapsack and the linear multiple choice knapsack problems. To

the best knowledge of the author, an algorithm for this special problem has not appeared

in the literature. In the next sections, two important propositions are developed, which

lead to the construction of an efficient branch and bound algorithm for Problem MIMCK.

5.2 Solution Procedure

Problem MIMCK is related to Problem LMCK in the following way. When the

binary constraints are relaxed (i.e. each binary variable can take any value between 0 and

1), MIMCK reduces to the LMCK Problem. This is because each originally binary
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variable ykj forms a multiple choice set of cardinality 1 with associated multiple choice

constraint ykj < 1. Each binary variable, therefore, occupies its own list, having no other

variables to compete with for dominance. The domination criteria, discussed above for

LMCK, also apply to Problem MIMCK and the procedure for eliminating dominated

continuous variables remains the same. The master list now contains both types of

variables, xki 's and ykj 's.

The first proposition developed follows from the theory that was discussed in the

previous chapter for Problem LMCK and deals with the linear programming (LP)

relaxation of MIMCK. The LP relaxation of MIMCK is formed by replacing the binary

constraints of the problem with bound constraints, 0 < ykj < 1. If B is the total number of

binary variables, B = Σ
kεS

 |Dk|, the resulting problem is a linear multiple choice knapsack

problem with B additional multiple choice constraints. Each of the additional multiple

choice sets is a singleton. As a result, the following important property holds.

Proposition 5.1: The optimal solution to the LP relaxation of MIMCK, contains at most

one binary variable with a fractional value.

Proof: The optimal solution to Problem LMCK has at most two fractional variables (a

continuous variable xki is considered fractional if 0 < xki < lk). If however this solution has

indeed two fractional variables, these variables belong to the same multiple choice set.

Since each originally binary variable belongs to a multiple choice set with cardinality 1,

the optimal solution to the LP relaxation of MIMCK contains at most one binary variable

with a fractional value.             .

The result stated by Proposition 5.1 is important because it ensures that out of the

B binary variables, no more than one will have a fractional value at the optimal solution
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to the LP relaxation of MIMCK. This simplifies the treatment of the problem since there

is at most one variable violating the integrality constraints. The power of this result

becomes clear, when we consider that the optimal solution to the LP relaxation of a

mixed integer problem usually has many fractional-valued binary variables.

At the first iteration of the proposed branch and bound (B&B) procedure, the

solution to the LP relaxation of the original problem is checked for feasibility. If it is

feasible with respect to the integrality constraints, the algorithm terminates since this is

the optimal solution of the problem. If not, this solution contains one fractional-valued

binary variable, ykj, according to Proposition 5.1. This is the critical variable, as defined

in the previous chapter. It is used for branching, generating two subproblems

(descendants), each of which has the additional constraint ykj = 0 and ykj = 1, respectively.

Clearly, Proposition 5.1 also applies to each of these subproblems, since each of them is a

new MIMCK Problem. The LP relaxation of each of these new subproblems is solved

and the objective value is stored as an upper bound to any feasible solution that may be

obtained in the associated subtree. At the next iteration, the subproblem with the

maximum upper bound is selected for exploration. The iterations continue by branching

on the fractional binary variables until an optimal solution to the original problem is

reached.

The subproblems of the B&B tree differ from each other only in a small number

of constraints, i.e., in the additional constraints that set some of the binary variables to 0

or 1. The following proposition is used to reduce significantly the time needed to solve

the LP relaxation of these subproblems.
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Proposition 5.2: With the exception of the critical variable, the order of increasing

variables when Algorithm LMCK is applied to two descendant subproblems generated by

the B&B procedure is the same as the order of increasing variables when Algorithm

LMCK is applied to the parent problem.

Proof: The validity of this proposition results from the fact that the only difference

between the LP relaxation of the parent problem and the LP relaxation of its children

problems, is that the critical variable is constrained to have a specific value (0 or 1) in

each of the two children problems. The exclusion of the critical variable does not affect in

any way the order of the other variables in ML, since this variable is a multiple choice set

by itself. Therefore, the master list ML of increasing variables for the children nodes is

identical to that of the parent node with the only exception that the critical variable is

excluded.              .

The important implication of this proposition is that it is not necessary to solve

from scratch the LP relaxations of the various subproblems, since the solution to the LP

relaxation of their parent problem is available. Thus, the solution of the two descendant

subproblems can be found, starting from the solution of their parent problem, by utilizing

properly Algorithm LMCK. The only additional information needed for this procedure is

the order in which the remaining variables, besides the critical variable, should be

increased. This information is provided by the list ML which was already created in Step

0 of Algorithm LMCK.

A more detailed outline of the algorithm, called Algorithm MIMCK, follows. For

reasons of clarity and simplicity, the variables are indexed sequentially using a single

index. The following additional notation is used:



Chapter 5:                      The 0-1 Mixed Integer Knapsack Problem with Linear Multiple Choice Constraints

73

t =  index for labeling the nodes of the B&B tree,

A = set containing the active nodes of the B&B tree, i.e., the nodes yet to be explored,

I0(t) = set containing the indexes of the binary variables set to 0 at node t,

I1(t) = set containing the indexes of the binary variables set to 1 at node t,

ut = upper bound on the optimal objective value in the subtree with root t,

et = indicator that takes the value 1 if the critical variable of subproblem t is binary

(infeasible solution) and 0 if it is continuous (feasible solution),

ft = index of critical variable of subproblem t,

vt = value of critical variable of subproblem t, and

bt
res = budget residual of the solution to the LP relaxation of subproblem t.

Algorithm MIMCK

Step 1: Initialization

Initialize the index of the root of the B&B tree to 1. Set A = {1}, I0(1) = ∅ and I1(1) = ∅ .

Step 2: LP relaxation of original problem

Solve the LP relaxation of the original problem using Algorithm LMCK. Store in u1 the

objective value for this solution and in b1
res the associated budget residual.

If Algorithm LMCK terminates at Step 1.0, set f1 = v1 =e1 = 0 and STOP.

If Algorithm LMCK terminates at Step 1.1 or 1.2, store in f1 and v1 the index and the

value of the critical variable for this solution, respectively. If this critical variable is

binary, set e1 = 1 and go to Step 3. Otherwise, set e1 = 0 and STOP; the current solution is

optimal for the original problem.
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Step 3: Branching

Let t0 be the smallest unused index for labeling nodes and t* = t
At

umaxarg   
∈

.

If et* = 0, STOP; the solution at node t* is optimal for the original problem.

Else, branch on variable yr, where r = ft*, generating two new subproblems and their

associated nodes. Label the nodes t0 and t0 + 1, corresponding to subproblem with yr = 0

and yr = 1, respectively. Set I0(t0) = I0(t*) χ{r}, I1(t0) = I1(t*), I0(t0 +1) = I0(t*), I1(t0 +1) =

I1(t*) χ{r} and A = A – {t*}χ{t0}χ{t0 +1}.          

Step 4: LP relaxation of subproblem t0

Set bt0res = dr vt* and ut0 = ut* - qr vt*  (results obtained after setting yr to 0). Let s be the

index denoting the order of yr in list ML – {yj / j0 I0(t*) or j0 I1(t*)}. Using this list in

place of ML, resume Step 1 of Algorithm LMCK, updating bt0res and ut0 in place of bres

and u, respectively.

If Algorithm LMCK terminates at Step 1.0, set ft0 = vt0 = et0 = 0.

If Algorithm LMCK terminates at Step 1.1 or 1.2, store in ft0 and vt0 the index and the

value of the critical variable of that solution, respectively. If this variable is binary, set et0

= 1; otherwise, set et0 = 0.

Step 5: LP relaxation of subproblem t0 + 1

Step 5.0 Set 1t
res0b +  = - dr (1 -  vt* ) and ut0+1 = ut* + qr (1 -  vt* ) (results obtained after

setting yr to 1). Let s be the index denoting the order of yr in list ML – {yj / j0 I0(t*) or j0

I1(t*)}.

Step 5.1 Set s = s - 1.
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If s = 0, fathom the current node by removing its index from A, since the budget residual

is negative (infeasible subproblem) and go to Step 3.

Otherwise, select the sth variable for decrease from list ML – {yj / j∈  I0(t*) or j∈  I1(t*)}.

Let this variable belong to a multiple choice list k. If this is the first variable in this

multiple choice list, go to Step 5.2. If not, this is a continuous variable, xj, that originally

replaced another variable, xi, in list k; go to Step 5.3.

Step 5.2 Use in this step dj, qj, yj and 1 in place of cj, pj, xj and lk, respectively, if the

selected variable is binary (yj) instead of continuous (xj).

If cj lk < | 1t
res0b + |, set xj = 0, 1t

res0b + = 1t
res0b + + cj lk, ut0+1 = ut0+1 - pj lk and go to Step 5.1.

If cj lk > | 1t
res0b + |, set xj = lk - | 1t

res0b + |/cj, ut0+1 = ut0+1 - pj| 1t
res0b + |/cj, 1t

res0b + = 0 (xj is the

critical variable) and go to Step 5.4.

Step 5.3 If (cj - ci)lk < | 1t
res0b + |, set xj = 0, xi = lk, 1t

res0b + = 1t
res0b + + (cj - ci)lk, ut0+1 = ut0+1 -

(pj - pi)lk and go to Step 5.1.

If (cj - ci)lk > | 1t
res0b + |, set xj = lk - | 1t

res0b + |/(cj - ci), xi = lk - xj, ut0+1 = ut0+1 - (pj - pi)| 1t
res0b + |/

(cj - ci), 1t
res0b + = 0 (xj is the critical variable) and go to Step 5.4.

Step 5.4 Store in ft0+1 and vt0+1 the index and the value of the critical variable of this

solution, respectively. If this variable is binary, set et0+1 =1; otherwise, set et0+1 = 0. Go to

Step 3.             .

The following remarks should be made about the algorithm. Step 5 of Algorithm

MIMCK is essentially a backward move of Algorithm LMCK. Starting from a solution

with negative budget residual, variables are successively decreased in the exact reverse

order in which they were increased originally, until the budget residual becomes 0.
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Proposition 4.1 guarantees that, during this move, the total cost will monotonically

decrease and for this reason at some point (if the current subproblem is feasible) it will

become equal to budget b. This new solution coincides with the one that would have been

obtained if Algorithm LMCK had been applied from scratch. Note that, each time

branching on a binary variable takes place, the budget residual of the current subproblem

is equal to 0, otherwise the increase of this binary variable wouldn't have been

interrupted.

A tree node is fathomed from the B&B tree if the associated subproblem is

infeasible. This happens when the binary variables that have been set to 1 result in a total

cost that exceeds the available budget, b. A check for this is done at the beginning of Step

5.1. If the backward scanning of list ML ends with a negative budget residual then the

current tree node is removed from the set of active nodes.

If no binary variables are present, the above algorithm can be used to solve the

linear multiple choice knapsack problem. Similarly, if no multiple choice constraints are

present, the algorithm can be used to solve the general mixed integer knapsack problem.

Finally, if no continuous variables are present, the algorithm can be used to solve the

general binary knapsack problem.

The advantages of the algorithm become immediately clear. The solution to the

LP relaxation of the subproblems generated in subsequent steps of the algorithm is

obtained in most cases in a small number of iterations, since the relationship between the

optimal solutions of parent and children nodes is cleverly utilized. Additionally, the

memory space usage is low, since only a small number of values need to be stored for
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each of the nodes of the B&B tree. These are the values of ut, ft, vt, et, bt
res and the

elements of sets I0(t) and I1(t). Decision variable values are not stored explicitly.

To obtain the values of the decision variables at the termination of Algorithm

MIMCK, the optimal node g and its associated critical variable are needed. If the optimal

node does not have a critical variable (termination at Step 1.0 of Algorithm LMCK), a

fictitious variable is appended as critical at the end of list ML with value 0. The values of

the decision variables are obtained as follows. All binary variables appearing in ML to the

left of the critical variable have a value of 1, unless their index is in set I0(g). Similarly,

all binary variables appearing in ML to the right of the critical variable, have a value of 0,

unless their index is in set I1(g).

The values of the continuous variables are determined as follows: Let k be the

multiple choice set containing the critical variable. If the critical variable is the first

variable in multiple choice list k then no other variable from k will have a positive value.

If not, the only other continuous variable with a positive value from multiple choice set k

will be the one appearing in ML to the left and closest to the critical variable. The value

of that variable is equal to the right hand side of the associated multiple choice constraint

minus the value of the critical variable.

If a multiple choice set has no continuous variables appearing in ML to the left of

the critical variable then all its variables are equal to 0. If it has at least one variable

appearing in ML to the left of the critical variable, exactly one variable in this set has a

positive value and all the remaining variables are equal to 0. The variable with the

positive value from this multiple choice set is the one appearing in ML to the left and
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closest to the critical variable. The value of this variable is equal to the right hand side of

the associated multiple choice constraint.

5.3 Application of the Algorithm

In this section the application of the proposed algorithm is illustrated in a small

numerical example. Consider the following MIMCK Problem having 3 disjoint variable

sets (|S| = 3), each of which contains 7 continuous and 3 binary variables (|Rk| = 7, |Dk| =

3, k = 1,2,3):

Max  3x11 + 5x12 + 8x13 + 6x14 + 5x15 + 6x16 + 7x17 +  

         2x21 + 6x22 + 4x23 + 6x24 + 3x25 + 6x26 + 7x27 +

         2x31 + 4x32 + 4x33 + 8x34 + 3x35 + 5x36 + 9x37 +

         3y11 + 0.6y12 + 3y13 + y21 + 7y22 + 6y23 + 4y31 +

         3y32 + 5y33

s.t.    x11 + 2x12 + 4x13 + 3x14 + 6x15 + 5x16 + 4x17 +  

         5x21 + 2x22 + x23 + 3x24 + 6x25 + 5x26 + 3x27 +

         5x31 + 2x32 + 4x33 + 2x34 + 6x35 + x36 + 3x37 +

         7y11 + 5y12 + 4y13 + 2y21 + 6y22 + 4y23 + 7y31 + 6y32 + y33 < 40

         x11 + x12 + x13 + x14 + x15 + x16 + x17 < 1

         x21 + x22 + x23 + x24 + x25 + x26 + x27 < 1

         x31 + x32 + x33 + x34 + x35 + x36 + x37 < 1

         xki > 0, k = 1,2,3, i = 1,2,…,7

         ykj 0 {0,1}, k = 1,2,3, j = 1,2,3
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The application of Algorithm MIMCK is illustrated below.

Step 1: Initialize the index of the first B&B tree node to 1. Set A = {1} and initialize I0(1)

= ∅  and I1(1) = ∅ .

Step 2: The complete list of increasing variables for this problem is: ML = {x36, y33, x23,

x11, x34, x12, x22, y23, x13, y12, y22, x27, x37, y13, y31, y32, y21, y11}. This list was created by

merging multiple choice lists L1 = {x11, x12, x13}, L2 = {x23, x22, x27}, L3 = {x36, x34, x37}

and the 9 singletons containing the binary variables. The remaining 12 continuous

variables are not included in ML because they are dominated under Properties 4.1 and

4.2. To understand how these list are created, it is illustrated next how multiple choice list

L1 and the associated slopes of the variables in this set are found. As already mentioned in

Chapter 4, the nondominated variables form the function that defines the upper left hull

of the variables in this set. Therefore, in order to identify them, any algorithm for finding

the convex hull of n points in 2 dimensions can be used. The nondominated variables for

the first set are x11, x12 and x13. When these variables are ordered by increasing costs, the

following list results for set 1: L1 = {x11, x12, x13}. The associated slopes of these 3

variables are 3, 2 and 1.5, respectively. The associated slope for variable x11 is computed

as p11/c11 = 3/1 and the associated slopes for variables x12 and x13 are computed as

1112

1112
cc
pp

−
−

= 
12
35

−
− and 

1213

1213
cc
pp

−
−

= 
24
58

−
− , respectively. The multiple choice lists of the

other two sets of continuous variables are constructed similarly. Each binary variable

forms alone a multiple choice list, with associated slope its ratio qkj/dkj. After construction

of the individual lists, master list ML is constructed by merging the variables from all
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these lists in non-increasing order of their associated slopes. For example, variable x36

appears first in ML because it has the highest associated slope (5).

Algorithm LMCK, applied to the LP relaxation of the original problem, terminates with

critical variable y32 = 0.5, b1
res = 0 and u1 = 56.5. Therefore, f1 = 32 and v1 = 0.5. Set e1 =

1 and go to Step 3.

Step 3: The only index in A is 1, therefore node 1 is selected. Since e1 = 1 and f1 = 32,

branch on variable y32, generating two new nodes, node 2 and node 3. Node 2 has the

additional constraint y32 = 0 and node 3 has the additional constraint y32 = 1. Set I0(2) =

I0(1) χ{32}, I1(2) = I1(1), I0(3) = I0(1), I1(3) = I1(1) χ{32} and A = A – {1} + {2,3}=

{2,3}.

Step 4: After setting y32 = 0, we get b2
res = d32v1 = 6(0.5) = 3 and u2 = u1 - q32v1 = 56.5 –

3(0.5) = 55. Then, after Algorithm LMCK is resumed, it terminates with critical variable

y11 = 0.143, b2
res = 0 and u2 = 56.428. Set f2 = 11, v2 = 0.143 and e2 = 1, since the critical

variable of this solution is binary.

Step 5: After setting y32 = 1, we get b3
res = - d32(1 - v1) = 0 - 6(1 - 0.5) = -3 and u3 = u1 +

q32(1 - v1) = 56.5 + 3(1 - 0.5) = 58. The backward move of the algorithm terminates with

critical variable y31 = 0.57, b3
res = 0 and u3 = 56.28. Set e3 = 1, f3 = 31 and v3 = 0.57.

The algorithm proceeds similarly and the B&B tree, shown in Figure 5.1,

summarizes all iterations. Next to each node there are two entries. The first entry is the

upper bound on the optimal objective value of the associated subtree. The second entry is

the value of the critical variable of this node. Only 7 nodes were generated by the

algorithm and the subproblem solutions were easily found as an implication of

Proposition 5.2.
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The optimal solution of the problem is obtained at node 4. The optimal values of

the decision variables are found as follows: No critical variable exists for this solution,

since list ML was scanned completely (surplus budget). Thus, a fictitious variable is

appended at the end of list ML. Each of the three multiple choice sets has at least one

continuous variable to the left of the critical variable in ML. Therefore, for each set, the

only positive continuous variable will be the one to the left and closest to the critical

variable with value equal to the right hand side of the associated multiple choice

constraint. Therefore, the only positive continuous variables are x13 = 1, x27 = 1, x37 = 1.

For node 4 we have: I0(4) = {32,11} and I1(4) = ∅ . Thus, all binary variables but y11 and

y32 have a value of 1.

Figure 5.1: Branch and bound tree for the MIMCK numerical example
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1    y32 = 0.5

    u2 = 56.428
   y11 = 0.143     2

        u3 = 56.28
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                        5
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5.4 Computational Complexity and Results

In this section, the complexity of Algorithm MIMCK is analyzed and some

computational results obtained from computer experimentation are presented. The special

case of MIMCK without continuous variables is the general binary knapsack problem

which is NP-hard. Therefore, Problem MIMCK is NP-hard too.

Let Nk be the number of (continuous) variables in multiple choice set k,

∑
∈

=
Sk

kNN , k
Sk

max NmaxN
∈

= and r = |S|. The time needed for the construction of the

multiple choice lists in Step 0 of Algorithm LMCK is  )O( k
Sk

k NlogN∑
∈

=

)O( kk NlogN
Sk

∑
∈

= )O( maxNlogN . The time needed for merging these lists to obtain the

master list ML is O(N log r) (see Cormen et al., 2001). The work needed in Step 0 of

Algorithm LMCK dominates the work needed in Step 1, which is linear in the total

number of variables.

As a B&B algorithm, MIMCK has an exponential worst case complexity. Step 1

requires constant time. If B is the number of binary variables, they can be ordered in time

O(B log B). The remaining r multiple choice lists of continuous variables can be

constructed in time )O( maxNlogN . Then, these r + 1 lists can be merged into a single

list in time O((N+B) log (r+1)). Therefore, Step 2 requires time O(B log B)

+ )O( maxNlogN + O((N+B) log (r+1)) = O((N+B) m, where m = max (log B, log Nmax,

log r). Steps 4 and 5 require time which is linear in the total number of variables and on

the average linear on only a subset of them. This is because, in most situations, only a

subset of the variables in master list ML will be scanned. Together with Step 3 however,
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Steps 4 and 5 are executed in the worst case exponentially many times, since the

maximum number of subproblems generated is an exponential function of the total

number of binary variables.

Algorithm MIMCK was coded in C and tested on a Pentium IV/1.8 GHz

processor. As shown in the results presented in Table 5.1, the number of sets as well as

the number of continuous variables within each set were varied from 100 to 400 in steps

of 100. For all problems, the total number of binary variables was equal to the total

number of continuous variables. Thus, the smallest size problems have 10,000 continuous

and 10,000 binary variables, while the largest size problems have 160,000 continuous and

160,000 binary variables. Parameters pki, cki, qkj and dkj were uniformly distributed

between 0 and Nk. While Table 5.1 shows the initial mix of binary and continuous

variables, the problems that result after elimination of the dominated variables, contain

significantly fewer continuous variables. This is because the expected percentage of

integer dominated variables within a multiple choice set increases from 70% when Nk =

10, to 96% when Nk = 150 (Sinha and Zoltners, 1979). This reduction in the number of

continuous variables increases the difficulty of the problem as explained shortly.

Parameter lk was set equal to 1 for all multiple choice sets. Finally, the budget b was set

at k
Sk

ki
Ri

ki
Ri

BNcc
kk

 0.25) maxmin(
2
1 ++∑

∈ ∈∈
. Thus, the average budget amount available for

allocation to each multiple choice set and each binary variable was 0.5 Nk and 0.25 Nk,

respectively. This decision for the average budget amount allocated to each binary

variable ensures a tight budget constraint, i.e., a scarce budget. Computational experience

indicates that the problems generated this way show more computational interest.
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The above procedure for generating random problems is based on the procedure

used by Sinha and Zoltners (1979) to test the multiple choice knapsack problem. Later

papers dealing with the same problem used a similar procedure for generating random

problem instances. Of course, this procedure was properly adapted to suit the structure of

the problem considered in this chapter.

For each problem size, 10 different random instances were solved. The column

labeled “LP” shows the average time needed for solving the LP relaxation of the problem

(Steps 1 and 2 of Algorithm MIMCK). Only the average time is reported in Table 5.1,

since no significant variation was observed for different instances of the same problem

size. The results for the total time needed and the number of nodes of the B&B tree

generated until the optimal solution of the problem is found, are shown in the columns

under the label “Time” and “Nodes”, respectively. The minimum, maximum and average

for each of these parameters are reported. The last column of Table 5.1 shows the

percentage of the continuous variables that are dominated and therefore eliminated as an

implication of Properties 4.1 and 4.2. Execution times are reported in seconds.
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Table 5.1: Computational results for MIMCK (time in seconds)

r Nk B LP Time Nodes dom.

Avg Min Avg Max Min Avg Max %

100 100 10000 0.171 0.180 0.702 5.008 45 1034 8415 96.47

100 200 20000 0.363 0.371 0.733 1.362 59 689 1855 97.94

100 300 30000 0.549 0.661 3.336 12.618 101 2429 6785 98.49

100 400 40000 0.812 1.022 5.342 33.589 195 2654 16573 98.82

200 100 20000 0.361 0.410 0.689 1.192 39 594 1463 96.31

200 200 40000 0.794 0.871 1.358 1.963 67 572 1185 97.90

200 300 60000 1.267 1.372 4.267 16.524 117 1856 8531 98.50

200 400 80000 1.767 2.684 6.384 10.615 483 2160 4247 98.88

300 100 30000 0.603 0.611 1.152 3.575 21 695 3647 96.38

300 200 60000 1.297 1.332 3.829 15.272 31 1663 8739 97.94

300 300 90000 2.071 2.514 12.085 48.88 277 3891 15919 98.56

300 400 120000 2.799 3.024 9.270 25.587 101 1937 6069 98.87

400 100 40000 0.815 0.891 1.672 4.827 69 870 3879 96.31

400 200 80000 1.798 1.883 4.543 11.557 3 1403 4957 97.99

400 300 120000 2.711 2.864 11.387 28.861 77 2772 9137 98.55

400 400 160000 3.883 4.086 13.901 28.301 7 2660 6525 98.85

The efficiency of the algorithm is demonstrated by the results of Table 5.1. The

average number of tree nodes is a small percentage of the total number of binary

variables for all problem sizes. The average and the maximum number of nodes seem to

increase very slowly as the number of binary variables increases. Similar observations

can be made for the total time needed to obtain the optimal solution of the problem. It is
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also very interesting to note that, as shown in the column for the minimum number of

nodes, in some instances the algorithm terminated with a negligible number of tree nodes.

For most problem sizes, both the total time and the size of the B&B tree vary

significantly, as indicated by the high values of the ranges (Max-Min). This is due to the

fact that occasionally a problem requires a large B&B tree, while most problems require a

relatively small B&B tree. This behavior is not surprising, since the performance of most

B&B algorithms depends on the specific instance of the problem.

The time needed for solving a given problem is substantially smaller than the time

needed to obtain the solution using a commercial package for mixed integer

programming (e.g. LINGO, 2001). The savings in computational effort become more

significant as the size of the problem increases. For example, in the problems with r =

100, Nk = 100, B = 10000, LINGO needs on the average 6 seconds to find the optimal

solution. For the problems with r = 200, Nk = 200, B = 40000, this time increases to 30

seconds and for the problems with r = 300, Nk = 300, B = 90000, it increases to 70

seconds. The machine runs out of memory for the problems with r = 400, Nk = 400, B =

160000.

A significant amount of time is spent for solving the LP relaxation of the original

problem in Step 2 of Algorithm MIMCK, due to the fact that the nondominated variables

have to be identified in order to construct the multiple choice lists. The time consumed on

branching and solving subproblems of the B&B tree is relatively small. This is mainly

due to the utilization of Proposition 5.2. As a percentage of the average total time, the

time, t, needed to obtain the solution to the LP relaxation of the problem ranges between

15% and nearly 60%. When r is fixed, a power trendline with equation t = aNk
b provides
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very good fit. The values of the parameters (a,b) are (0.001,1.1071) when r = 100,

(0.0018,1.1453) when r = 200, (0.0036,1.1124) when r = 300 and (0.0048,1.1152) when r

= 400. A similar trend is observed when Nk is fixed, with equation t = arb. The values of

the parameters (a,b) now are (0.0009,1.1359) when Nk = 100, (0.0017,1.1573) when Nk =

200, (0.0026,1.1659) when Nk = 300 and (0.0045,1.1285) when Nk = 400. Thus, when

fixing one of the parameters r or Nk, the average time for solving the LP relaxation

increases almost linearly with respect to the other parameter.

A decrease in the number of continuous variables of the problem reduces the

effort needed for the construction of the multiple choice lists in Step 2 of Algorithm

MIMCK. On the other hand, however, this decrease results in large size B&B trees. This

happens because, as the multiple choice lists (and therefore master list ML too) become

more dense in continuous variables, it is more likely that the critical variable of any

subproblem will be continuous. This implies that it is also more likely that a subproblem

has a feasible mixed integer solution. As a result, the associated B&B tree does not

extend to many levels. Therefore, for a fixed number of discrete variables, a decrease in

the number of continuous variables is expected to increase the execution time of MIMCK

Algorithm. This is in contrast with the typical B&B algorithm that spends most of its time

in solving LP relaxations by simplex.

The number of multiple choice sets also has a significant impact on the total

computation time. A higher number of multiple choice sets results in more nondominated

continuous variables. This increases the density of the problem in continuous variables,

which affects the total computational effort as explained above. Therefore, as the same

total number of continuous variables is distributed into more multiple choice sets, the
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total computational effort is expected to decrease. For example, consider the problems

with r = 100, Nk = 400, B = 40000, from Table 5.1, with a total of 40,000 continuous

variables. In these problems, the number of nondominated continuous variables is

40,000(1-0.9882) = 472. On the other hand, if the same 40,000 variables are spread

evenly into 400 multiple choice sets, 40,000(1-0.9631) = 1476 are nondominated, as

shown in Table 5.1 for the problems with r = 400, Nk = 100, B = 40,000. This increases

the density of the master list ML in continuous variables that in turn decreases the

expected number of tree nodes generated. With very few exceptions, the results of Table

5.1 are quite in agreement with this behavior.
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“You may be disappointed if you fail, but you are doomed if you don't try.” Beverly Sills

“Only those who dare to fail greatly can ever achieve greatly.” Robert Francis Kennedy

“I shall take nothing for granted until I have the opportunity of looking personally into

it.”        Sherlock Holmes

“Every great advance in science has issued from a new audacity of imagination.”

   John Dewey

Chapter 6:

The Linear Multiple Choice Knapsack

Problem with Equity Constraints
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6.1 Introduction

In this chapter, the problem that results when the binary variables are dropped

from the model of Section 1.3 is treated. The problem is abbreviated as LMCKE,

standing for Linear Multiple Choice Knapsack Problem with Equity Constraints and is

formulated as follows:

The auxiliary decision variables L and U are defined so that the total resource

amount allocated to each set k, ∑
∈ kRi

kiki xc , belongs to the interval [L,U]. The width of

this interval is restricted to at most f. The above problem is obtained by adding these

equity constraints to the LMCK Problem introduced in Chapter 4. It can be used for

optimal fund allocation to disjoint sets of continuous highway improvements.

As it was seen in the previous chapters, many different solution techniques have

been developed for the LMCK Problem. To the best knowledge of the author, however,

the aggregated problem that results from the inclusion of the equity constraints has not

been studied before. The contribution of the present chapter is the introduction of a new

significant problem, and the methodological and computational advances made for it.
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Specifically, a mathematical formulation of the problem is developed of which several

important properties are identified. These are utilized to design an optimal two-phased

greedy procedure for its solution. Then, the computational complexity of this algorithm is

examined and the results of computational experiments illustrating its efficiency are

presented.

6.2 Solution Methodology

The algorithm proposed for the solution of LMCKE utilizes the MC variable lists

constructed in Step 0 of Algorithm LMCK. It can be divided into two phases. In the first

phase, the equity constraints are relaxed and an optimal solution to Problem LMCK is

obtained. Starting from this solution, in the second phase, the equity constraints are

enforced and an optimal LMCKE solution is obtained. The modified algorithm by

Johnson and Padberg (1981), described in Chapter 4, is utilized for the solution of LMCK

in Phase I, because it provides valuable information for obtaining the overall optimal

solution in Phase II.

6.2.1 Properties of LMCKE

While Problems LMCK and LMCKE exhibit significant differences, they also

share common properties allowing Algorithm LMCK to be utilized as a building block of

an algorithm for the LMCKE. Next, some useful terminology is introduced and then

these important properties are developed.

Consider any feasible solution to the LMCK Problem that possibly violates the

equity constraints of LMCKE. The resource amount allocated to a multiple choice set
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according to this solution is called the cost of this set. The terms maxcost and mincost are

used to denote the maximum and minimum resource amount, respectively, that is

allocated to a single multiple choice set, according to this solution. Any multiple choice

set whose cost differs from maxcost and mincost is called an internal set. A multiple

choice set whose cost is equal to maxcost or mincost is called an upper or a lower set,

respectively.

Let’s focus now on one multiple choice set, say k. Parameter lk is called the length

of set k. The values of the decision variables in set k are called the partial solution of set

k. If this partial solution contains exactly one positive decision variable with value equal

to the length of this set, it is called a rounded partial solution. If it contains one or two

positive decision variables with fractional values, it is called a fractional partial solution.

Finally, the terms increasing and decreasing are used to characterize both multiple

choice sets as well as their associated slopes. The increasing and decreasing slopes of a

multiple choice set k are defined as follows: If the partial solution of this set is rounded

with xkm = lk, then the increasing slope of this set, 
kmkn

kmkn
cc
pp

−
−

, is the associated slope of

variable xkn, immediately succeeding xkm in multiple choice list k. If no variable follows

xkm in the associated list, then the increasing slope of this set does not exist. If the partial

solution of this set is fractional, then the increasing slope of this set is the associated

slope of this fractional decision variable (if there are two, consider the one that succeeds

the other in the associated list k). The decreasing slope of a set is always equal to the

associated slope of its positive decision variable (as before, consider the second variable

if two positive variables exist). The increasing slope of a set represents the incremental
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increase in total profit per unit of resource that is additionally allocated to this set.

Similarly, the decreasing slope of a set represents the incremental decrease in total profit

per unit of resource that is removed from this set.

In summary, the decreasing slope of a set always exists, assuming that a positive

resource amount has been allocated to that set. However, the increasing slope may not

exist. This happens for a multiple choice set whose partial solution contains one rounded

positive variable and that variable happens to be the last in the associated multiple choice

list. Clearly, in this case we cannot allocate additional resource units to this set, since

there is no other variable that can be increased. As will be explained later, both the

increasing and the decreasing slopes of a set can have positive or negative values.

The terms increasing and decreasing will also be used to characterize sets. If we

decide to allocate additional resource units to a set, then this set is called an increasing

set because the resource amount allocated to it increases. Similarly, if we decide to

decrease the resource amount allocated to it, it is called a decreasing set.

An important difference between the LMCKE and the LMCK Problems is that

variables which qualify for elimination according to Properties 1 or 2 but belong to the

right upper hull of the associated multiple choice set may appear in an optimal LMCKE

solution. To illustrate why this can happen, consider the following Linear Multiple

Choice Knapsack example:

Max 5x11 + 3x12 + 10x21

   s.t. 2x11 + 4x12 + 5x21 < 9

x11 + x12 < 1

x21 < 1
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x11, x12, x21 > 0

The problem has two multiple choice sets. The first consists of the variables x11

and x12 and the second of the variable x21. The optimal LMCK solution is x11 = 1, x12 = 0

and x21 = 1. If, however, a maximum difference of one unit is allowed between the

resource amounts allocated to the two multiple choice sets, the optimal solution when the

equity constraints are included is x11 = 0, x12 = 1 and x21 = 1. Note that, even though

variable x12 is integer dominated by variable x11 (p12/c12 < p11/c11 and p12 < p11), it has a

positive optimal value. The reason is because x12 enlarges the cost domain of the first

multiple choice set. The situation is illustrated in Figure 6.1. If only x11 is considered in

multiple choice set one and x12 is eliminated, then at most three units of resource can be

allocated to multiple choice set two. This is because the maximum resource amount that

can be allocated to multiple choice set one is equal to two, the cost of x11, and

additionally, the resource difference between the two sets cannot exceed one unit. On the

other hand, when x12 is not eliminated, as many as five units can be allocated to multiple

choice set two, since c12 = 4. Hence, although increasing variable x12 after the increase of

x11 is not a profitable action within the first multiple choice set, since there is a negative

profit increase, it is an overall optimal action because the profit gained by the further

increase of x21 is greater.

Based on the above analysis, variables that enlarge the cost domain of the

associated multiple choice set should not be eliminated for Problem LMCKE, even if

they are dominated according to Properties 1 and 2. The above discussion implies the

following result:
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                    Case 1: Variable x12 is eliminated                              Case 2: Variable x12 is not eliminated
                     Solution: x11 = 1, x12 = 0, x21 = 0.6                                Solution: x11 = 0, x12 = 1, x21 = 1
             p                    Profit = 11                                             p                     Profit = 13    

                                                                             

                                         multiple choice set 1                                                          multiple choice set 1
                          x11                                                                           x11
             5                                                                                     5                  x12

                                                                                                    3

              O      2                                                      c                    O        2        4                                           c

            p                                                                                     p

                                                                                                           f = 1
           10  f = 1

                                          multiple choice set 2                                                          multiple choice set 2

             O        2    3      5                                        c                   O               4    5                                        c

Figure 6.1: An example where an integer dominated

variable appears at the optimal solution of LMCKE

Proposition 6.1: Variables that do not belong to the upper hull of the associated multiple

choice coefficient space are dominated and can be eliminated from further consideration

for LMCKE.

Proof: Consider the variables that define the complete upper hull of a multiple choice set,

as shown in Figure 6.2 and assume that the optimal solution of LMCKE contains a
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variable, xkg, that does not belong to this upper hull. Let xkf and xkh be two adjacent

variables from the upper hull such that ckf < ckg < ckh. Note that these variables are always

defined uniquely, although xkf may need to be defined as the origin with ckf = pkf = 0.

Consider the system of equations ckf z + ckh w = ckgxkg and z + w = xkg, in the unknowns

(z,w). Note that this system always has a unique solution if ckf ≠  ckh. Consider the

alternative solution that results when xkf’ = xkf + z, xkh‘ = xkh + w and xkg‘ = 0, while the

values of all the other variables remain the same. By the way z and w are defined, the

budget, equity and multiple choice constraints are still satisfied. From the values of z and

w obtained from the solution of the system we get after some basic manipulation: pkf z +

pkh w > pkgxkg  <=> ... <=> )()( khkgkhkf
khkf

khkg pppp
cc
cc

−>−
−
−

 or

)()( kfkgkfkh
kfkh

kfkg pppp
cc
cc

−>−
−
−

. The last two expressions are equivalent to

khkg

khkg

khkf

khkf
cc
pp

cc
pp

−
−

<
−
−

 and 
kfkg

kfkg

kfkh

kfkh
cc
pp

cc
pp

−
−

>
−
−

, respectively, and they are always

true by the way xkf, xkg and xkh and their slopes are defined (see Figure 6.2). This

contradicts the fact that the current solution is optimal and thus xkg must have a value of 0

at the optimal solution of the problem. Note that, if ckg = ckf or ckg = ckh, then the current

objective can be improved by substituting directly variable xkg with the upper hull

variable at the same cost (xkf or xkh). Therefore, variables that are enclosed in the

(complete) upper hull of the associated multiple choice set can always be eliminated for

LMCKE.             .
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                                                                xkh

                                   

                                                               xkg                                          xkf
                                               xkf

                                                                                                             xkg
                                                              xkg
                                                                                                                        xkh
                                                                             Dominated
                                                                                Region
       xkg

                                       O       ckf                ckh                                 ckf        ckh

                        Figure 6.2: Eliminating dominated variables within a MC set for LMCKE

The variables within each list are ordered in increasing order of their costs. On the

other hand, the multiple choice constraints restrict the sum of all variables of each set to

at most lk. Therefore, the maximum budget amount, MCk, that can be allocated to set k is

MCk = ckqlk, where xkq is the variable with the largest cost among all nondominated

variables of set k. Let MCmin = k
Sk

MCmin
∈

. By the way the equity constraints are defined,

it is clear that the following holds:

Corollary 6.1: The cost of any single set at the optimal solution of LMCKE is at most

MCmin + f.
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Let r = |S| be the total number of multiple choice sets. Another upper bound on the cost of

any set at the optimal solution of LMCKE is given by the following proposition:

Proposition 6.2: The cost of any single set at the optimal solution of LMCKE cannot be

larger than f
r

1r
r
b −+ .

Proof: Let g denote the maximum value by which the cost of any single set can exceed

the average amount b/r, at the optimal solution of LMCKE. Then, in order for the equity

constraints to be satisfied, the cost of any other set must be at least b/r + g - f. Therefore,

in the extreme case that every other set has a cost of b/r + g – f, we must have (b/r + g) +

(r-1)(b/r + g - f) = b => b + rg - (r-1)f = b => g = f(r-1)/r. If the cost of a set increases

beyond b/r + f(r-1)/r, the problem will be infeasible because even if the cost of every

other set is at its lowest possible value, the total budget amount required for this solution

will be more than b. Thus, the maximum value that the cost of a single variable set can

have at the optimal solution of LMCKE is b/r + g = b/r + f(r-1)/r.             .

Under the assumption that the total available budget amount is used at the optimal

solution of the problem, we can also prove similarly that b/r - f(r-1)/r is a lower bound of

the optimal cost of each variable set. Hence, the following additional result holds:

Corollary 6.2: If the unused budget at the optimal solution of LMCKE is equal to 0, the

cost of any single variable set lies in an interval centered at b/r whose width is less than

but tends to 2f as r goes to ∞ .

Corollary 6.2 suggests that, under the assumption that the total available budget is

used at the optimal solution of the problem, the interval of width f containing the costs of

the variable sets lies entirely in the interval [b/r - f(r-1)/r, b/r + f(r-1)/r]. Of course, it is

not possible to know in advance whether the budget residual will be 0 at the optimal
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solution of the problem. Therefore, in the general case, the lower bound b/r - f(r-1)/r on

the optimal cost of each set cannot be used.

Combining Corollary 6.1 and Proposition 6.2, the following result is obtained:

Corollary 6.3: The minimum of MCmin + f and b/r + f(r-1)/r is a valid upper bound, UB,

on the cost of any single variable set at the optimal solution of LMCKE.

The construction of the MC variable lists of Algorithm LMCK has to be modified

slightly to take into account Proposition 6.1. Thus, the variables that belong to the right

upper hull have to be added to the set of nondominated variables obtained by Algorithm

LMCK. This means than not only the left upper hull up to the point with the highest

profit should be considered, but the complete upper hull up to the variable with the

highest cost (this variable will always be nondominated). In this way, variables which are

dominated according to Properties 1 and 2 and may appear at the optimal solution of the

problem will not be eliminated. The situation is illustrated in Figure 6.3. For Problem

LMCK, only variables xki, xkj, xkl and xkm are nondominated. For Problem LMCKE,

besides these variables, xkp and xkq are nondominated too. This also explains why the

increasing or the decreasing slope of a multiple choice set can also take negative values.

For example, if the cost allocated to set k, shown in Figure 6.3, is more than ckmlk, then

both the increasing and the decreasing slope of that set are negative.
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                                                                                                       xkm
                            

                                                                                 xkl

                                                               xkj                                                                                     xkp

                                                              xki                                                                                 xkq

                                                                                                Dominated
                                                                                                 Region

                                              O     cki      ckj        ckl               ckm                           ckp     ckq

                       Figure 6.3: Nondominated variables within a multiple choice set for LMCKE

The multiple choice lists show the order in which variables within a multiple

choice set should be increased (decreased), when more (fewer) resource units are

allocated to that set. Any partial solution of a multiple choice set corresponds to a point

that belongs to the upper hull of the variables in this set. By allocating more or fewer

resource units to this set, we are simply moving to adjacent points while always staying

on this boundary. When the cost of a set increases, we can find the new partial solution of

this set by using the order of the variables in the associated multiple choice list. This

amounts to performing enough iterations of the Algorithm LMCK to use the additional

resource amount. Similarly, when the resource amount allocated to one set decreases, we

can find the new partial solution by following the reverse order of the variables in this

list. The algorithm is run until the resource amount allocated to this set drops to the

desired value.
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To illustrate, let's assume that, in Figure 6.3, pki = 2, pkj = 3, pkl  = 4, cki = 1, ckj = 2

and ckl = 4. Let's also assume that the length of segment k is equal to 1 and its current

cost, bk, is equal to 1.5. The partial solution is: xki = 0.5 and xkj = 0.5 with an associated

profit of 2.5. This point belongs to the line segment that connects the points

corresponding to variables xki and xkj. If one additional resource unit is allocated to this

set, to find the resulting solution we iterate as follows: The current solution was obtained

by increasing xkj and decreasing xki (xkj was replacing xki) in Step 1.2 of Algorithm

LMCK. Since xkj currently has a value of 0.5, ckj - cki = 1 and lk = 1, we need 0.5 resource

units so that the replacement of xki by xkj is complete. At that point we have xki = 0, xkj = 1

and bres = 1 - 0.5 = 0.5. This solution is represented by the point corresponding to variable

xkj in Figure 6.3. The next variable considered for increase is xkl. Since (ckl - ckj) lk = (4-

2)1 = 2 > bres, we set xkl = bres /(ckl - ckj) = 0.25, xkj = lk - xkl = 0.75 and we stop because

this is the new partial solution for this set. This is exactly one iteration according to Step

1 of Algorithm LMCK. The new solution is represented by a point on the line segment

connecting the points corresponding to xkj and xkl. The new contribution of this set to the

total profit is pkj + 
kjkl

kjkl
cc
pp

−
−

(bk - ckj) = 3 + 
24
34

−
− (2.5 - 2) = 3.25. Similarly, if the

resource amount allocated to this set decreases by one unit, then we first get the

intermediate solution xki = 1, xkj = 0, xkl = 0 and finally the solution xki = 0.5, xkj = 0, xkl =

0 with associated contributed profit pkixki = 1. In this case, variables are decreased in the

reverse order in which they appear in the associated multiple choice list and as a result,

the total cost and profit also decrease. The above analysis suggests that when the resource

amount allocated to some set changes, we can find the new partial solution just by
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moving on the upper hull boundary of this set, i.e., by increasing or decreasing variables

in the order they appear in the associated multiple choice list.

6.2.2 A Greedy Algorithm for LMCKE

In the first phase of the algorithm proposed for Problem LMCKE, the equity

constraints are relaxed and the resulting LMCK Problem is solved using Algorithm

LMCK. The second phase starts with this superoptimal solution that only violates the

equity constraints and tries to reach feasibility while maintaining superoptimality. The

algorithm terminates as soon as the equity constraints are satisfied.

Phase II of the algorithm works as follows: The costs of the multiple choice sets

in the solution obtained from Phase I are arranged in increasing order. The difference

between the smallest and the largest of these sets is denoted by fa and represents the

actual maximum resource difference between any two sets. If this difference is less than

or equal to the desired value, f, then this solution is optimal for LMCKE. Otherwise, the

differences in the costs of sets exceeding this value are iteratively narrowed until the

equity constraints are satisfied. This is done in such a way that superoptimality is

maintained.

At each iteration there are five distinct options for decreasing the value of fa. Out

of these options, the optimal is selected and carried out. The criterion used for the

selection of the next option is the incremental loss in total profit per unit decrease in the

maximum resource amount difference. In other words, if ∆P and ∆fa are the resulting

differences in total profit and in fa, respectively, then at each iteration the option that

yields the minimum loss in total profit per unit decrease in fa is selected. These actions
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are illustrated in Figure 6.4. The computation of ∆P/∆fa for each of them is described

next. The following additional notation is used: 

m = number of upper sets,

n = number of lower sets,

a = sum of decreasing slopes of upper sets,

e = sum of increasing slopes of lower sets,

u = decreasing slope of decreasing set,

o = increasing slope of increasing set.

       Option A                 Option B                Option C              Option D            Option E
             Cost                           Cost                           Cost                       Cost                     Cost

                          w                                                                z                             w

          fa                                fa               z                    fa                              fa                          fa
                     z

                                                              w                                w                                                       w

Figure 6.4: The five best options for decreasing the value of fa

Option A: Decrease the resource amount allocated to all the upper sets and

reallocate this amount to the internal or lower set with the maximum increasing

slope (increasing set).

Let w be the amount by which the resource of the upper sets will be decreased and z the

amount by which the resource of the increasing set will be increased. Then, we have: mw

= z. The amount ∆fa by which fa will be decreased is equal to w. Therefore, the value of

∆P is oz – aw = omw – aw =(om-a)∆fa.
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Option B: Decrease the resource amount allocated to the internal or upper set with

the minimum decreasing slope (decreasing set) and reallocate this amount to the

lower sets.

Let w be the amount by which the resource of the lower sets will be increased and z the

amount by which the resource of the decreasing set will be decreased. Then, we have: nw

= z. The amount ∆fa by which fa will be decreased is equal to w. Therefore, the value of

∆P is ew-uz = ew-unw = (e-un)∆fa.

Option C: Decrease the resource amount allocated to all the upper sets and

reallocate this amount to all the lower sets.

Let w be the amount by which the resource of the lower sets will be increased and z the

amount by which the resource of the upper sets will be decreased. Then, the amount ∆fa

by which fa will be decreased is equal to z + w. We also have mz = nw. Therefore, the

value of ∆P for this option is ew-az = 
nm
name

+
−  ∆fa.

Option D: Decrease the resource amount allocated to all the upper sets.

Let w be the amount by which the cost of the upper sets will be decreased. Then, the

value of ∆P for this case is –aw = -a∆fa. At the same time, the resource residual increases

by mw = m∆fa.

Option E: Increase the resource amount allocated to all the lower sets.

Let w be the amount by which the cost of the lower sets will be increased. Then, the value

of ∆P for this case is ew = e∆fa. At the same time, the resource residual decreases by nw =

n∆fa.

It should be noted that the lower (upper) set was assumed to be non unique in

Option A (Option B). Although Option C is really a special case of both Options A and
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B, it is treated separately. Option A reduces to Option C if the increasing set is the unique

lower set. Similarly, Option B reduces to Option C if the decreasing set is the unique

upper set. Option D is a special case in which the resource amount removed from a set is

not allocated anywhere else but is kept for future use. A case where it is better to keep

rather than reallocate the resource amount recovered from a set is when the increasing

slopes of all the lower and internal sets are negative. Similarly, Option E is a special

option that can only be selected if at the time that it is considered there is a positive

resource residual.

Once a decision is made and one of the above five options is selected, a stopping

criterion determines how far this iteration is carried out. In general, we can say that the

algorithm stops as soon as either some of the ratios ∆P/∆fa change, or fa becomes equal to

f. In the latter case, the algorithm stops simply because the equity constraints are satisfied

and therefore the solution at hand is optimal. In the former case, the algorithm stops

because new ratios ∆P/∆fa have to be computed at that point and compared for the five

options. Depending on which of the five options is chosen the stopping conditions are:

Option A: There are five stopping conditions in this case. The first is when the

decreasing slope of one of the decreasing upper sets changes. The second comes about

when the increasing slope of the increasing set changes. In both of these cases, the ratio

∆P/∆fa of some of the five options changes and has to be recomputed. The third condition

is when the cost of the decreasing upper sets becomes equal to the cost of the increasing

set. The fourth arises when the cost of the decreasing upper sets becomes equal to the

cost of one of the internal sets. In either of these cases, if we continue this iteration, the
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value of fa will not decrease further from its present value. The final condition appears

when the value of fa becomes equal to f.

Option B: There are also five stopping conditions for this option and they are symmetric

to the ones for Option A. Specifically, the first: when the increasing slope of one of the

increasing lower sets changes. The second: when the decreasing slope of the decreasing

set changes. The third: when the cost of the increasing lower sets becomes equal to the

cost of the decreasing set. The fourth: when the cost of the increasing lower sets becomes

equal to the cost of one of the internal sets. The final condition: when the value of fa

becomes equal to f.

Option C: The five stopping conditions for this option are similar to the conditions for

options A and B. The first: when the increasing slope of one of the increasing lower sets

changes. The second: when the decreasing slope of one of the decreasing upper sets

changes. The third: when the cost of the increasing lower sets becomes equal to the cost

of one of the internal sets. The fourth: when the cost of the decreasing upper sets

becomes equal to the cost of one of the internal sets. The final condition: when the value

of fa becomes equal to f.

Option D: In this case there are only three stopping conditions. The first arises when the

decreasing slope of one of the decreasing upper sets changes. The second is met when the

cost of the decreasing upper sets becomes equal to the cost of one of the internal sets. The

third condition is met when the value of fa becomes equal to f.

Option E: In this final case, there are four stopping conditions. As mentioned before,

when this action is selected, there is a positive resource residual that can be used for

allocation. The first condition appears when the increasing slope of one of the increasing
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lower sets changes. The second comes about when the cost of the increasing lower sets

becomes equal to the cost of an internal set. The third condition is met when the resource

residual decreases to zero while the fourth when the condition on f is satisfied.

Using the above stopping criteria we are able to determine the extent of the

current iteration. Each of the above conditions defines some value for ∆fa. The minimum

of these values for the conditions that apply is the value by which fa will decrease in this

iteration. If the equity constraints are still not satisfied, the new ratios for the five options

are recomputed and compared and a new option is selected. It is illustrated next how ∆fa

is computed for Option A. For each of the other options, the calculation is similar.

For each of the upper sets whose cost is decreased, the first condition is met when

the variable immediately preceding the variable that was last increased at the partial

solution of that set gets a value equal to the length of that set. Supposing that Figure 6.3

refers to an upper set and the starting partial solution of this set is represented by any of

the points on the line connecting xki and xkj (excluding the point representing xki), this

corresponds to the point representing xki. If bk is the cost of this set at the current solution

and cki the cost of that variable, then the value of ∆fa for this set is equal to bk – ckilk. Of

course, if no such variable exists, then only the first variable of this list has been

increased and therefore the first condition is met when the cost of this set drops to 0. The

first stopping condition is defined by the minimum of the ∆fa values computed this way

for each of the upper sets. The value of ∆fa for the second stopping condition is defined

once the variable that is currently increased in the increasing set gets a value equal to the

length of that set. This solution corresponds to a point such as the one representing xkj in

Figure 6.3. If bk is the cost of this set in the current solution and ckj the cost of that



Chapter 6:                                        The Linear Multiple Choice Knapsack Problem with Equity Constraints

108

variable, then the value of ∆fa defined from the second condition is equal to (ckjlk –bk)/m.

For the third condition, let bu and bi be the cost of the upper sets and the increasing set,

respectively, for the current solution of the problem. The third condition is met when bu –

w = bi + z or bu - ∆fa = bi + m∆fa => ∆fa = (bu – bi)/(m + 1). Similarly, if bo is the

maximum cost spent on an internal set, then the value of ∆fa defined by the fourth

stopping condition is bu - bo. Finally, the value of ∆fa defined by the fifth condition is fa -

f.

At each iteration, after the best option is selected, the value of ∆fa is computed

using the above procedure and the new solution is found. The algorithm terminates with

an optimal solution when fa becomes equal to the value of f. Next, the algorithm

developed for Problem LMCKE is formally introduced.

Algorithm LMCKE

Phase I (Optimal solution of relaxed problem)

Step 0 (Construction of multiple choice lists)

Using the input data compute the value of UB.

For each multiple choice set k, construct a multiple choice list Lk of variables as follows:

Identify the nondominated variables in this set and order them by increasing costs. Stop

adding variables to list k as soon as the first variable with cost > UB/lk is appended.

Variables succeeding this variable (i.e., variables with greater cost) can be eliminated.

Define the associated slope of the first variable xki in each multiple choice list k as the

ratio pki/cki. For each subsequent variable xkj in the list, define its associated slope as (pkj -

pki)/(ckj - cki), where xki is the variable immediately preceding xkj in Lk. While maintaining

all individual multiple choice lists, create a master list, ML, by merging the variables of
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all multiple choice lists in nonincreasing order of their associated slopes. Initialize the

objective function value to 0 and the budget residual, bres, to b.

Step 1 (Iteration)

while (bres > 0 & the next variable from ML exists & the associated slope

of this variable is > 0) do{

if the cost of the set containing this variable is less than UB

iterate as in Step 1 of Algorithm LMCK

else

go to the next variable from ML

}end while

Phase II (Optimal solution of LMCKE)

while (fa > f) do{

select option with minimum loss in total profit per unit decrease in fa,

find stopping condition and compute optimal ∆fa,

iterate, update solution and find new value of fa

}end while              .

When the first variable with non-positive associated slope is encountered, Step 1

of Phase I of Algorithm LMCKE terminates because iterating further will decrease the

total profit. In the same step, a variable of a set is only increased if the cost of this set is

less than UB, in accordance with Corollary 6.3. Thereafter, such a set is skipped rather

than considered for further resource allocation. The validity of the above algorithm is

summarized in the following result:
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Proposition 6.3: Algorithm LMCKE correctly produces an optimal solution to Problem

LMCKE.

Proof: The above modification of Algorithm LMCK terminates with a valid optimal

solution to Problem LMCK in Phase I of Algorithm LMCKE, when an upper bound UB

to the optimal cost of each set is imposed. The five options considered at each iteration in

Phase II of Algorithm LMCKE are the best choices for decreasing the value of fa. The

option selected at each iteration is the one that results in the smallest decrease in the total

profit per unit decrease in the value of fa. During any iteration, the ratios ∆P/∆fa of the

five options do not change. Thus, after an iteration terminates, the solution obtained is

optimal to the special LMCKE Problem that has the current value of fa as value of f.

Therefore, as soon as the value of fa becomes equal to f, the solution at hand is optimal

for LMCKE.             .

Another interesting result can be obtained by further analyzing Algorithm

LMCKE:

Corollary 6.4: In the optimal solution of LMCKE, each of the multiple choice sets has at

most two positive decision variables. If a set has exactly two positive variables then these

are adjacent in the associated list and they both have fractional values. Moreover, their

sum is equal to the length of that set.

6.2.3 Illustration of the Algorithm

Having introduced Algorithm LMCKE and proved its validity, its application is

illustrated next on a small numerical example. Consider the problem with eight multiple

choice sets and the following data:
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Table 6.1: Data for the LMCKE numerical example

Variable Profit Cost Variable Profit Cost Variable Profit Cost
x11 7 3 x33 7 9 x62 5 10
x12 8 4 x34 1 1 x63 7 5
x13 5 2 x41 4 1 x64 8 8
x14 7 15 x42 6 4 x71 3 2
x21 2 1 x43 7 7 x72 4 3
x22 6 6 x51 6 3 x73 6 7
x23 4 3 x52 8 10 x81 3 7
x24 7 12 x53 9 9 x82 6 10
x31 2 7 x54 7 4 x83 4 5
x32 5 6 x61 6 4 x84 3 3

We also assume that b = 25, lk = 1 for all k and f = 2.

Phase I:

The eight multiple choice lists are: L1 = {x13, x11, x12, x14}, L2 = {x21, x23, x22, x24},

L3 = {x34, x32, x33,}, L4 = {x41, x42, x43}, L5 = {x51, x54, x53, x52}, L6 = {x61, x63, x64, x62}, L7 =

{x71, x72, x73,} and L8 = {x84, x83, x82}. Variables x31 and x81 do not appear in the associated

lists because they are dominated. As an example, multiple choice list 1 was constructed

as follows: It contains four nondominated variables. These are arranged in increasing

order of their costs. The associated slope of variable x13 is p13/c13 = 2.5, while the

associated slopes of x11, x12 and x14 are 
1311

1311
cc
pp

−
−

 = 2, 
1112

1112
cc
pp

−
−

 = 1 and 
1214

1214
cc
pp

−
−

 =

-0.09, respectively. Note that, by construction, variables appear in this list in decreasing

order of their associated slopes. The multiple choice lists of the remaining seven sets are

constructed similarly.

Based on these lists of variables and their associated slopes, the master list of

increasing variables is ML = {x41, x13, x11, x21, x51, x61, x71, x12, x23, x34, x54, x63, x72, x84, x32,
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x22, x33, x42, x73, x83, x53, x82, x43, x64, x24, x14, x52, x62}. When there is a tie between

variables to append to ML next, the decision is made arbitrarily. The value of MCmin is 7

(for k = 4 and k = 7). Therefore, the first upper bound on the cost of each set is MCmin + f

= 7 + 2 = 9. The second upper bound on the cost of a set as determined by Proposition 6.2

is b/r + f(r - 1)/r = 25/8 + 2(8-1)/(8) = 4.875. Hence, the overall upper bound, UB, on the

optimal cost of each set is equal to min(9, 4.875) = 4.875. The solution obtained from

Phase I of Algorithm LMCKE is the following (only nonzero variables are shown):

MC set 1 (internal set): x12 = 1 with cost 4, profit 8, increasing slope  -0.09 and

decreasing slope 1.

MC set 2 (internal set): x23 = 1 with cost 3, profit 4, increasing slope 0.67 and decreasing

slope 1.

MC set 3 (internal set): x34 = 0.775, x32 = 0.225 with cost 2.125, profit 1.9, increasing

slope 0.8 and decreasing slope 0.8.

MC set 4 (lower set): x41 = 1 with cost 1, profit 4, increasing slope 0.67 and decreasing

slope 4.

MC set 5 (internal set): x54 = 1 with cost 4, profit 7, increasing slope 0.4 and decreasing

slope 1.

MC set 6 (upper set): x61 = 0.125, x63 = 0.875 with cost 4.875, profit 6.875, increasing

slope 1 and decreasing slope 1.

MC set 7 (internal set): x72 = 1 with cost 3, profit 4, increasing slope 0.5 and decreasing

slope 1.

MC set 8 (internal set): x84 = 1 with cost 3, profit 3, increasing slope 0.5 and decreasing

slope 1.
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The total profit for this solution is 38.775 and the value of fa is 3.875. The total available

budget amount is used for this solution.

Phase II:

Since fa > f, we compute the ratio ∆P/∆fa for each of the five options. The internal

or lower set with the largest increasing slope is set 3. If the cost allocated to multiple

choice set 6 is decreased by ∆fa and the cost allocated to multiple choice set 3 is increased

by the same amount, the net change in profit is (0.8 - 1)∆fa. Therefore, the ratio ∆P/∆fa for

option A is -0.2. The internal or upper set with the smallest decreasing slope is multiple

choice set 3. If the cost allocated to multiple choice set 4 is increased by ∆fa and the cost

allocated to multiple choice set 3 is decreased by the same amount, the net change in

profit is (0.67 -0.8)∆fa. Therefore, the ratio ∆P/∆fa for option B is -0.130. If the cost

allocated to multiple choice set 4 is increased by ∆fa/2 and the cost allocated to multiple

choice set 6 is decreased by the same amount (so that the total decrease of fa is ∆fa), the

net change in profit is (0.67-1)∆fa/2. Therefore, the ratio ∆P/∆fa for option C is -0.165. If

the cost allocated to multiple choice set 6 is decreased by ∆fa, then the net change in

profit is -1∆fa. Therefore, the ratio ∆P/∆fa for option D is -1. Finally, the ratio ∆P/∆fa for

option E is not defined, since the budget residual for the present solution is not positive.

Comparing the ratios ∆P/∆fa, the best option is B.

Next, the value of ∆fa defined by the stopping conditions for this iteration must be

determined. The increasing slope for multiple choice set 4 changes when its cost becomes

equal to 4. Since the current cost of this set is 1, the first stopping condition is met for ∆fa

= 3. The decreasing slope for multiple choice set 3 changes when its cost drops to 1.

Since the current cost of this set is 2.125, the second stopping condition is met for ∆fa =
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1.125. If ∆fa = 0.5625, the costs of multiple choice set 4 and multiple choice set 3 become

equal. Therefore, the third stopping condition is met for ∆fa = 0.5625. The fourth stopping

is met at the time that the cost of multiple choice set 4 becomes equal to 3. Therefore, the

value of ∆fa defined from this condition is 2. Finally, the value of ∆fa defined by the fifth

condition is 1.875, since f = 2 and fa = 3.875. Comparing the value of ∆fa determined by

the various stopping conditions, we conclude that the iteration should be terminated for

∆fa = 0.5625, since this is the minimum among them.

Next, we perform the iteration and update the solution that we have. During this

iteration, only the partial solutions for multiple choice sets 3 and 4 change. The new

solutions for these two sets are:

MC set 3 (lower set): x34 = 0.8875, x32 = 0.1125 with cost 1.5625, profit 1.45, increasing

slope 0.8 and decreasing slope 0.8.

MC set 4 (lower set): x41 = 0.8125, x42 = 0.1875 with cost 1.5625, profit 4.375, increasing

slope 0.67 and decreasing slope 0.67.

The total profit for this new solution is 38.7, the budget residual is still 0 and the

value of fa decreased to 3.3125. The algorithm continues in the same way and the optimal

solution to the problem is: x12 = 1, x23 = 1, x34 = 0.8, x32 = 0.2, x41 = 0.667, x42 = 0.333, x54

= 1, x61 = 1, x72 = 1 and x84 = 1 with all the other variables equal to 0. The objective

function value is 38.467 and of course we have fa = f = 2.
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6.3 Computational Implementation

In this section, the complexity of Algorithm LMCKE is discussed and then the

results of the computational experiments conducted are presented. The conclusions

reached from the analysis of these results are also summarized.

6.3.1 Computational Complexity

To analyze the complexity of Algorithm LMCKE, each of its two phases is

considered separately. The time needed for the construction of the multiple choice lists in

Step 0 of Algorithm LMCKE is )O()O( max
Sk

kk NlogNNlogN =∑
∈

, where Nk is the

number of variables in MC set k, ∑
∈

=
Sk

kNN and k
Sk

max NN
∈

= max . As already

mentioned, the nondominated variables form the upper hull of all the variables in the

same set. Therefore, to identify them, any O(n log n) algorithm for finding the convex

hull of n points in two dimensions can be used. The time needed for merging the

individual multiple choice lists to obtain master list ML is O(N log r) (see also Cormen et

al., 2001). The work needed in Step 0 of Phase I Algorithm LMCKE dominates the work

needed for the increase of the decision variables in Step 1, which is linear in the total

number of variables. Therefore, the worst case complexity of Phase I is O(N log Nmax) +

O(N log r) = O(N log m), where m = max(Nmax, r).

Consider now Phase II of the algorithm. The work needed at each iteration to

determine the upper, lower and internal sets is bounded above by O(r). Once this is done,

the work needed to find the ratios ∆P/∆fa for each of the five options, to find the optimal

value of ∆fa and to update in order to obtain the new solution is also bounded above by
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O(r). The number of Phase II iterations is affected by the number of times each of the

different stopping conditions applies which is not known in advance. Therefore, in what

follows, the average-case performance of Algorithm LMCKE is examined by analyzing

the computational experiments that were conducted.

6.3.2 Computational Experiments

Algorithm LMCKE was coded in C and tested on a Pentium III/600 MHz

processor. The results obtained are presented in Tables 6.2-6.5. In these tables, r denotes

the number of multiple choice sets and Nk the number of variables in set k, as before,

which was assumed to be the same for all k.

 Two types of problems were tested. The first considered both dominated and

nondominated variables among the initial variables of the problem. Problems of this type

resemble the problems that arise in real world applications. In the second, the variable

coefficients were randomly generated in such a way that no variable was dominated.

Problems of this type provide good insight into the performance of the algorithm, yet

would rarely arise in practice.

For problems with dominated variables, parameters pki and cki were uniformly

distributed between 0 and Nk. The budget amount b was set equal to

)maxmin(
2
1
∑
∈ ∈∈

+
Sk

ki
Ri

ki
Ri

cc
kk

, which is on the average equal to 0.5(rNk). The value of f was

set to 0.001b, i.e., 0.0005(rNk) on the average. The value of lk was set to 1 for all k.

For this type of problems, computational time showed significant variance. As a

result, 30 random instances were solved for each problem size. The results reported in
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columns 3-6 of Table 6.2 are the average and the maximum time in seconds needed for

Phase I and for total execution of the algorithm, respectively. The last column in this

table presents the percentage of total variables that were eliminated, either because they

were enclosed in the upper hull of the associated set, or because they were eliminated as a

consequence of Corollary 6.3. It is clear from this column that the vast majority of the

initial variables are dominated. The average time needed for Phase II when r or Nk are

fixed is also depicted in Figures 6.5 and 6.6, respectively.

Tables 6.3 and 6.4 present results indicating the sensitivity of the total

computational time and of the objective function value to changes in f, for problems with

dominated variables. For each problem size, the results for a single instance are shown to

ensure that the averages over all instances do not blur the analysis.

The third column of Table 6.3 shows, for each problem size, the total

computational time, required for Phase I. The same instance was then solved successively

with smaller values of f. In the three middle columns, the changes in total computational

time are shown when the value of f decreases by the same quantity (25% of its original

value each time), up to the point where it becomes four times smaller than its initial

value. In the last three columns, computational time results are reported when the value

of f decreases by the same percentage (90% each time), up to the point where it becomes

1000 times smaller than its initial value. In Table 6.4, the changes in the objective

function value are reported for the same changes in f as above.

Table 6.5 shows computational time results for the scenario involving problems

with nondominated variables only. In this case, the variance exhibited among problems of

the same size was not significant and as a result, only 10 instances were solved for each
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problem size. The variable coefficients were generated differently than for the previous

scenario to ensure that no dominated variables were among the initial variables of the

problem. More specifically, these variables were constructed in such a way that they all

belonged to the upper hull of the associated set. Using random numbers, it was possible

to generate the cost (for variables in the left upper hull) or the profit (for variables in the

right upper hull) and the associated slope of each of these variables. Once these two

parameters for each variable were known, the third (profit or cost) was uniquely defined.

All distributions used in this procedure were uniform. The intention was to have similar

distributions as in the case with dominated variables. Depending on the random number

sequence however, the cost or the profit of a variable could turn out to be more than Nk.

The budget amount b was set equal to rcu/2, where cu was the variable with the smallest

cost among all variables that appeared last in their associated MC list. The length of each

set was set equal to one as before. The value of f was set equal to 0.001fa. The reason a

different value of f than before was used is because the previous one was no longer very

restricting in this scenario, thus leading to easier problems. The average total

computational time to solve these problems when r or Nk are fixed is also depicted in

Figures 6.7 and 6.8, respectively.

Sensitivity analysis results for the problems with only nondominated variables are

not reported. For these problems, the initial value of fa is small - less than 10 for all

problem sizes. As a result, the computational effort needed to find an optimal solution is

not very large, as shown in Table 6.5. Additionally, the changes in the objective function

value are negligible, even when the value of f is 1000 times smaller than the value of fa.
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Table 6.2: Computational results for problems with dominated variables (in seconds)

Phase I Total time %

r Nk Avg    Max Avg     Max domin.

100 100 0.053  0.057 0.098   0.156 95.74

100 200 0.097   0.105 0.142   0.189 97.67

100 300 0.137   0.139 0.176   0.251 98.33

100 400 0.187   0.191 0.227   0.260 98.68

100 500 0.238   0.239 0.275   0.341 98.94

200 100 0.096   0.101 0.421   0.861 95.67

200 200 0.177   0.181 0.558   0.997 97.59

200 300 0.257   0.261 0.564   0.972 98.30

200 400 0.341   0.349 0.643   1.082 98.67

200 500 0.420   0.423 0.752   1.082 98.91

300 100 0.139   0.140 1.232   2.433 95.58

300 200 0.253   0.270 1.237   2.464 97.54

300 300 0.368   0.371 1.342   2.934 98.26

300 400 0.475   0.481 1.518   2.864 98.64

300 500 0.593   0.601 1.558   3.204 98.88

400 100 0.181   0.190 2.020   3.946 95.43

400 200 0.330   0.339 2.235   3.805 97.47

400 300 0.472   0.481 2.457   4.346 98.22

400 400 0.642   0.651 2.733   5.317 98.63

400 500 0.772   0.781 2.823   5.618 98.87

500 100 0.224   0.240 2.749   5.788 95.32

500 200 0.409   0.413 3.185   7.001 97.41

500 300 0.583   0.591 3.293   8.452 98.19

500 400 0.769   0.776 3.953   8.763 98.59

500 500 0.956   0.962 4.027   8.652 98.84
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Table 6.3: Sensitivity analysis of computational time (in seconds) with

respect to changes in  f  for problems with dominated variables

r Nk Initial 0.75 f 0.50 f 0.25 f 0.1 f 0.01 f 0.001 f

100 100 0.051 0.065 0.079 0.092 0.114 0.165 0.166

100 200 0.099 0.112 0.126 0.147 0.173 0.185 0.186

100 300 0.137 0.149 0.153 0.165 0.178 0.192 0.193

100 400 0.186 0.201 0.205 0.213 0.225 0.237 0.238

100 500 0.239 0.252 0.256 0.265 0.271 0.278 0.281

200 100 0.097 0.121 0.157 0.254 0.315 0.356 0.357

200 200 0.175 0.198 0.244 0.349 0.592 0.777 0.823

200 300 0.252 0.275 0.308 0.365 0.423 0.446 0.456

200 400 0.341 0.364 0.423 0.669 0.916 0.985 1.008

200 500 0.421 0.467 0.502 0.560 0.636 0.659 0.670

300 100 0.138 0.184 0.299 0.472 0.587 0.725 0.748

300 200 0.251 0.319 0.420 0.625 0.739 0.852 0.864

300 300 0.370 0.426 0.514 0.716 1.131 1.332 1.353

300 400 0.473 0.528 0.637 0.807 0.936 1.022 1.044

300 500 0.591 0.700 0.842 1.180 1.397 1.645 1.657

400 100 0.181 0.259 0.506 0.899 1.235 1.484 1.495

400 200 0.335 0.468 0.779 1.881 2.273 2.506 2.551

400 300 0.474 0.549 0.742 1.280 1.510 1.705 1.737

400 400 0.643 0.741 0.915 1.329 1.983 2.220 2.230

400 500 0.778 0.897 1.555 2.138 2.442 2.646 2.667

500 100 0.223 0.391 1.348 2.901 3.997 4.566 4.588

500 200 0.406 0.555 0.951 2.473 3.429 4.543 4.618

500 300 0.583 0.760 1.742 3.365 4.479 5.009 5.042

500 400 0.771 0.930 1.251 2.001 4.096 5.823 5.834

500 500 0.955 1.156 2.059 4.063 4.895 5.301 5.332
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Table 6.4: Sensitivity analysis of objective function value with

respect to changes in  f  for problems with dominated variables

r Nk Initial 0.75 f 0.50 f 0.25 f 0.1 f 0.01 f 0.001 f

100 100 9917 9911 9897 9873 9851 9834 9832

100 200 19903 19898 19888 19867 19847 19831 19829

100 300 29883 29880 29873 29852 29830 29811 29809

100 400 39902 39899 39887 39866 39846 39830 39828

100 500 49915 49912 49903 49884 49864 49846 49845

200 100 19811 19801 19775 19723 19669 19628 19623

200 200 39799 39792 39771 39725 39681 39647 39643

200 300 59761 59753 59730 59687 59646 59614 59610

200 400 79778 79770 79747 79698 79654 79618 79614

200 500 99813 99806 99780 99735 99692 99659 99655

300 100 29725 29714 29678 29604 29534 29481 29475

300 200 59695 59681 59645 59570 59501 59448 59442

300 300 89711 89702 89676 89609 89536 89479 89473

300 400 119704 119691 119654 119583 119514 119461 119456

300 500 149696 149686 149650 149581 149517 149464 149458

400 100 39605 39593 39551 39463 39378 39311 39304

400 200 79604 79586 79536 79431 79324 79243 79234

400 300 119630 119617 119572 119477 119377 119306 119298

400 400 159587 159574 159534 159444 159352 159283 159275

400 500 199603 199589 199542 199450 199322 199248 199240

500 100 49429 49412 49359 49247 49167 49071 49061

500 200 99483 99465 99402 99280 99180 99095 99085

500 300 149518 149502 149446 149332 149148 149050 149039

500 400 199504 199486 199430 199307 199230 199143 199134

500 500 249511 249493 249430 249291 249180 249088 249077
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Table 6.5: Computational time results (in seconds) for

problems with nondominated variables only

Phase I Total time %

r Nk Avg    Max Avg     Max domin.

100 100 0.138   0.141 0.170   0.172 48.29

100 150 0.239   0.241 0.267   0.271 48.59

100 200 0.361   0.362 0.396   0.399 48.85

100 250 0.519   0.521 0.555   0.559 48.95

100 300 0.696   0.701 0.731   0.734 49.10

150 100 0.217   0.221 0.302   0.309 48.37

150 150 0.374   0.381 0.458   0.467 48.65

150 200 0.566   0.571 0.654   0.661 48.89

150 250 0.802   0.811 0.893   0.902 49.09

150 300 1.076   1.082 1.168   1.173 49.11

200 100 0.294   0.301 0.466   0.471 48.36

200 150 0.505   0.511 0.680   0.684 48.72

200 200 0.764   0.772 0.944   0.952 48.99

200 250 1.082   1.084 1.267   1.273 48.89

200 300 1.447   1.452 1.636   1.643 49.14

250 100 0.371   0.372 0.680   0.691 48.34

250 150 0.632   0.641 0.947   0.952 48.79

250 200 0.961   0.962 1.279   1.282 48.95

250 250 1.370   1.432 1.698   1.763 49.08

250 300 1.816   1.823 2.144   2.154 49.14

300 100 0.465   0.471 0.970   0.982 48.37

300 150 0.786   0.791 1.300   1.305 48.74

300 200 1.190   1.192 1.713   1.721 48.97

300 250 1.674   1.682 2.201   2.213 49.09

300 300 2.239   2.253 2.800   3.144 49.20
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Figure 6.5: Graph of results for problems with dominated variables (fixed r)

Figure 6.6: Graph of results for problems with dominated variables (fixed Nk)
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Figure 6.7: Graph of results for problems with nondominated variables only (fixed r)

      Figure 6.8: Graph of results for problems with nondominated variables only (fixed Nk)
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This behavior can be explained by the fact that since each variable set has a large

number of nondominated variables this results in a large number of options for each set.

Consequently, the sets look similar and the maximum resource difference observed even

when the equity constraints are relaxed is relatively small.

6.3.3 Discussion of Results

The algorithm was compared with the commercial software package for linear

programming, LINGO, 2001. For all problems tested, the time it took Algorithm LMCKE

to solve a problem was much smaller than the time required by LINGO. These time

savings increase as the problem size increases. Therefore, the present algorithm can be

very useful to practitioners for solving real life applications with a large number of

decision variables.

For the problems with dominated variables and r > 100 , the percentage of total

time devoted to Phase II was larger than the percentage of time devoted to Phase I. As the

number of sets increased, the percentage of total execution time devoted to Phase II

increased. On the other hand, when the number of variables in each set increased, the

percentage of total execution time devoted to Phase I increased. The same behavior was

observed for the problems with only nondominated variables.

The algorithm exhibited high variability in the total computational time for the

problems with dominated variables. The time consumed in Phase I did not vary

drastically for different instances. Phase II, however, required time that significantly

varied across instances. Therefore, it was analyzed further how the total computational

effort for Phase II depends on the specific input for a given problem size. When the
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number of sets was fixed, the difference in total computational time, recorded when the

number of variables varied, was not significant. This can be explained by the fact that, for

a fixed value of r, the number of variables remaining after the elimination of the

dominated variables does not differ significantly, even when the value of Nk changes

from 100 to 500. The number of sets clearly plays a more important role in the

computational effort needed in order to obtain an optimal solution than the number of

variables in each set.

Another interesting observation has to do with changes in the total computational

time when the same number of decision variables is distributed across more multiple

choice sets. For problems with the same total number of decision variables, Phase II

seems to perform better as the number of variables within each multiple choice set

increases and the number of multiple choice sets decreases. This can be explained by the

fact that a large percentage of the initial variables in each multiple choice set is expected

to be dominated (see also Sinha and Zoltners, 1979). Therefore, for the same total

number of variables, the more multiple choice sets there are, the fewer the number of

dominated variables.

As Phase II proceeds, the algorithm sweeps an increasing number of segment

costs in an effort to bring the endpoints of the interval containing the set costs closer.

This was confirmed empirically as the cumulative number of upper and lower sets was

generally increasing as the number of iterations increased, although not necessarily

between any two consecutive iterations. For example, in a sample problem with 50 sets,

the cumulative number of upper and lower sets was two after termination of Phase I, 22
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after 30 Phase II iterations, 37 after 60 iterations, 43 after 90 iterations and 49 after 106

Phase II iterations.

As shown in Table 6.2, for the problems with dominated variables the time

needed for the execution of Phase II was significantly smaller for certain “easy” problems

than for other “hard” problems, even when the problem size was the same. To investigate

what makes a problem hard, some special problem instances were constructed. It was

observed from these experiments that the distribution of set costs after Phase I was

terminated, strongly affects the number of Phase II iterations and as a result, the total

computational effort. For a specific problem size with 100 sets for example, four different

cases were considered. In the first, the set costs after termination of Phase I were

uniformly distributed between 0 and 100. In the second, half of them were uniformly

distributed between 0 and 20 and the other half were uniformly distributed between 80

and 100. In the third, 40 costs were uniformly distributed between 0 and 20, 40 between

80 and 100 and 20 between 40 and 60. In the last case, all the costs were uniformly

distributed between 30 and 70. As expected, these last type problems were the easiest.

Their average total computational time was about half of that for the problems in the

second case which were the hardest. The problems in the first case were slightly harder

with a computational time increase of about 33% and the problems in the third case were

even harder with a computational time increase of about 27 % with respect to the

problems in the first case. A similar behavior was observed with respect to the number of

Phase II iterations. This analysis suggests that Phase II performs worse when the segment

costs are isolated into groups close to the endpoints of the interval containing the set

costs. As these costs are distributed more uniformly and closer to the midpoint of the
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containing interval, the performance of Phase II improves and the number of iterations

decreases.

With respect to the sensitivity analysis results, for all problem sizes, the initial

value of fa is close to Nk which is also an upper bound for fa. The objective function value

doesn't appear to be very sensitive as the value of f decreases. The largest decrease in

total profit was less than 1% even when the value of f was 1000 times smaller than fa.

Almost all this decrease is experienced up to the point where the value of f becomes equal

to 1% of its initial value. The further decrease in profit, observed when f decreases to

0.1% of its initial value, fa, was negligible. The same behavior was observed for the

sensitivity of the total computational time. A large percentage of the total effort was

devoted to bringing the value of f within 1% of its original value. When f was further

decreased, the additional effort needed was negligible. In contrast to the objective

function value, total computational time was strongly dependent on changes in f.

This behavior is better explained when we consider the order of magnitude of the

variable coefficients and f. When the value of f needs to be decreased to 100 times its

initial value, the variable coefficients are on the same order of magnitude with the desired

incremental decrease of the value of f. Therefore, this decrease cannot be easily

accomplished. On the other hand, when f must be decreased further, the absolute value of

this decrease is relatively small with respect to the coefficients of the variables and

therefore can be accomplished faster. For the same reason, the changes in the objective

function value become negligible as the desired value of f decreases further. This also

suggests that the absolute difference in f from its initial value is crucial for the
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computational effort needed to achieve this decrease and not the value of this decrease

expressed as a percentage.

Figure 6.9 presents a potential graph of the change in total profit (y-axis) with

respect to changes in f (x-axis). As shown, the function intercepts the y-axis at a point

which is equal to the total profit incurred when all the sets are allocated the same cost,

b/r. As the value of f increases, the total profit increases also, up to the point where the

value of f is equal to the value, fa, observed after the termination of Phase I. As expected,

the total profit remains constant when the value of  f increases beyond this value.

Figure 6.9: Optimal objective function value for different values of

the parameter f, expressed as a percentage of fa
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“What we see depends mainly on what we look for.”            John Lubbock

“C makes it easy to shoot yourself in the foot. C++ makes it harder, but when you do, it

blows away your whole leg.”       Bjarne Stroustrup

“Avoid those conclusions that are not confirmed by experience.”        Leonardo da Vinci

“Obstacles are those frightful things you see when you take your eyes off your goal.”

                  Henry Ford

Chapter 7:

The 0-1 Mixed Integer

Knapsack Problem with Linear

Multiple Choice and Equity Constraints
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7.1 Introduction

In this chapter, the problem of Section 1.3 is studied and an important

methodology is presented that can be used to obtain its solution. Fundamental insights

into its properties and significant contributions are provided. One such contribution is the

development of two optimization algorithms that exploit the special structure of the

problem, as well as an efficient optimization-based heuristic that can provide excellent

approximate results. Additionally, computational experiments are conducted, to

investigate how these algorithms and a commercial software package compare and how

they are affected by the main parameters of the model. Finally, the impact of the equity

constraints on the optimal objective function value is explored.

7.2 Problem Interpretation

In the formulation of Section 1.3, each variable set contains both discrete and

continuous variables. The continuous variables of each variable set, k, form the

associated multiple choice set, k. The quantity ∑∑
∈∈

+
kk Dj

kjkj
Ri

kiki ydxc is the total resource

amount allocated to set k, which is also called the cost of set k. As was the case with

Problem LMCKE, equity constraints are used to ensure a balance between the resource

amounts allocated to different variable sets. In order to reach the desired level of equity,

the resource amount allocated to each variable set must belong to an interval of certain

width. In this way, the maximum difference between the resource amounts allocated to

any two variable sets is bounded above by the width of this interval. The auxiliary
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decision variables L and U are used to denote the two endpoints of this interval which is

called the interval of uncertainty.

Two different versions of the problem are considered. In the first, both the width

and the exact location of the interval of uncertainty are known. In this case, the values of

L and U are known and the constraint U – L < f is dropped. This problem is abbreviated

as MIMCKFE, standing for 0-1 Mixed Integer Knapsack Problem with Linear Multiple

Choice and Fixed Equity Constraints. In the second version of the problem, only the

width of this interval is known, while its exact location is not. In this case, the constraint

U – L < f is used to restrict the width of this interval to a maximum value, f. This problem

is abbreviated as MIMCKE, standing for 0-1 Mixed Integer Knapsack Problem with

Linear Multiple Choice and Equity Constraints. The latter scenario adds a great deal of

difficulty to the problem and makes the development of an efficient procedure for solving

it significantly harder. In what follows, both variants of the problem are investigated

thoroughly.

 

7.3 The Problem with Fixed Interval of Uncertainty

A number of interesting properties of the MIMCKFE Problem are developed next.

Then, a discussion on their significance is provided. These properties are utilized later in

the development of a branch and bound solution algorithm.

7.3.1 The Structure of Optimal Solutions

Consider the linear relaxation of MIMCKFE that results when the integrality

constraints are replaced by bound constraints 0 < ykj < 1. Then, each binary variable
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becomes a multiple choice set of size 1. Therefore, if the equity constraints are ignored,

the resulting is a LMCK Problem. As illustrated in Figure 4.1 for LMCK, continuous

variables that do not belong to the left upper hull of the associated coefficient space are

dominated and should be eliminated from further consideration. This is because a suitable

combination of variables from the left upper hull will always provide the maximum

possible profit for a given value of the budget amount allocated to this set. This is due to

the linear multiple choice constraints that restrict the sum of all continuous variables

within this set to be at most lk.

Part of the theory for variable elimination that was developed for LMCK also

applies to MIMCKFE. Similarly with LMCKE, however, MIMCKFE differs from

LMCK in the following sense: Continuous variables which belong to the right upper hull

of the associated multiple choice coefficient space may appear in an optimal solution. In

other words, the set of nondominated continuous variables for MIMCKFE consists of all

the variables that belong to the complete upper hull and not only its left side.

The reason that the continuous variables of the right upper hull of the associated

multiple choice set cannot be eliminated, is because they enlarge the cost domain of that

variable set. This can be very useful in the following case. With reference to Figure 4.1,

this situation arises when the cost of set k is still less than L even though xkm (the variable

with the highest profit among all continuous variables of set k) is equal to lk and all the

binary variables of set k are equal to 1. In this case, the cost of set k cannot belong to the

interval [L,U] unless some of the continuous variables in the right upper hull take a

positive value. In other words, feasibility can only be reached by increasing at least one

variable from the right upper hull. Since at least one such variable will appear with a
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positive value in the optimal solution, xkm < lk, and the maximum profit for this set will

not be reached. Therefore, some profit has to be sacrificed to provide for an equitable

resource distribution. To illustrate this, consider the following example:

Max 5x11 + 3x12 + 10 x21 + 2 y11 + 10y21

  s.t. 2x11 + 4x12 + 5 x21 + 2 y11 + 2y21 < 13

                                              x11 + x12 < 1

                                              x21 < 1

                                              x11, x12, x21 > 0

                                              y11, y21 ∈ {0,1}

The problem has two disjoint variable sets. The first  contains the continuous

variables x11 and x12 and the binary variable y11. The second contains the continuous

variable x21 and the binary variable y21. The optimal solution is x11 = 1, x12 = 0, x21 = 1,

y11 = 1, y21 = 1, with a corresponding objective function value of 27.  Let's assume now

that an equitable allocation involves a budget belonging to the interval [6,7] for each of

these two sets. The optimal solution when the equity constraints are included is x11 = 0,

x12 = 1, x21 = 1, y11 = 1, y21 = 1, and the objective function value is 25. Note however that,

within set 1, variable x12 is integer dominated by variable x11, since p12/c12 < p11/c11 and

p12 < p11. The reason that x12 is positive in the optimal solution is because it enlarges the

cost domain of the first set.

If only x11 and y11 are considered in set 1 and x12 is eliminated from multiple

choice set 1, at most 4 units of resource can be allocated to set 1. Therefore, the problem

is infeasible. On the other hand, if x12 is increased replacing x11, as many as 6 resource

units can be allocated to set 1, making the problem feasible. Although increasing x12 after
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the increase of x11 is not a profitable action when the equity constraints are not present,

the substitution is necessary in order to reach feasible equitable allocation. Based on the

above analysis, continuous variables that enlarge the cost domain of the associated set

should not be eliminated for MIMCKFE, even if they are dominated. On the other hand,

if a continuous variable is not on the boundary of the upper hull of the associated multiple

choice coefficient space, the variables that belong to this hull ensure that the cost domain

of this set will not be reduced when this variable is eliminated. Hence, continuous

variables not on the complete upper hull can always be eliminated. The above discussion

leads to the following result:

Proposition 7.1: Continuous variables that do not belong to the upper hull of the

associated multiple choice coefficient space are dominated and can be eliminated from

further consideration for MIMCKFE.

Proof: Similar to the proof of Proposition 6.1.             .

It follows from Proposition 7.1 that Figure 6.3 presents the nondominated

continuous variables within a multiple choice set for MIMCKFE too.

For each variable set, a list of variables, Lk, can be constructed as follows. First

construct the individual list for the continuous variables and define their associated slopes

using the same procedure as the one for Problem LMCKE. Next, define the associated

slope of each binary variable ykj as its ratio qkj/dkj, and then merge all the variables (both

binary and continuous) of this set in a single list Lk in non-increasing order of their

associated slopes.

Assuming that the left upper hull of the associated multiple choice coefficient

space coincides with the complete upper hull, the situation is illustrated in Figure 7.1.
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This is the multiple choice set k comprising only continuous variables of Figure 4.1,

augmented with the binary variables ykr and ykt that belong to variable set k. Since the

slope of a binary variable is always positive, these will always appear on the left upper

hull of this graph. Let bk be the resource amount allocated to set k for the linear relaxation

of the problem. Based on this graph, a one to one relationship is defined between bk and

the profit contribution of set k. If the variables of set k are increased in the same order

that they appear in Lk, then the profit derived from this set will always be the largest

possible for a specific value of bk. Additionally, the optimal values of the variables in this

set can be found using this graph. Of course, bk depends on the relative magnitude of the

associated slopes of variables belonging to all sets and is not known in advance.

For small values of bk, i.e., 0 < bk < ckilk, variable xki will have a value equal to

bk/cki and will be the only positive variable in set k. This is because it has the highest

profit/cost ratio among all variables in this set. For bk = ckilk, xki = lk and the profit from

set k is pkilk. If bk is increased further, the next variable considered for increase is ykr.

When bk = ckilk + dkr, xki = lk and ykr = 1. When bk increases beyond ckilk + dkr, it becomes

more profitable for xkj to increase while xki has to decrease in order to ensure that the sum

of the two variables does not exceed lk. The reason xkj gradually replaces xki is its higher

profit (per unit). It can be easily shown that the new profit from set k is qkr + pkilk +

kikj

kikj
cc
pp

−
−

(bk – ckilk - dkr). Thus, the excess budget amount (bk – ckilk - dkr) is used for

gaining additional profit.
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     qkr+qkt+pkm                                                  ykt                                             xkm
      qkr+qkt+pkl
             qkr+pkl                             xkl

             qkr+pkj                         xkj           Dominated  Region

             qkr+pki                 ykr

                    pki                xki

            

                        O   cki   dkr+cki   dkr+ckj   dkr+ckl          dkr+dkt+ckl                                                 dkr+dkt+ckm

             Figure 7.1: Arrangement of the variables in a disjoint variable set for MIMCKFE

It is clear now that the associated slope of a variable provides a measure of the

incremental profit earned per unit of budget additionally used when this variable is

increased. Eventually, when bk = ckjlk + dkr, xkj = lk, ykr = 1 and xki = 0. If bk is increased

further, xkl will increase and xkj will decrease. The maximum value that bk can take is ckmlk

+ dkr + dkt, with a corresponding profit of pkmlk + qkr + qkt. As a result, at any point there

are at most two positive-valued continuous variables from a set. If the binary variables

are ignored, these are consecutive variables from the associated variable list and the

higher the value of bk, the higher their rank order in the list.
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The procedure described above is called a forward move applied to set k. It can be

used to find the partial solution corresponding to this set for the linear relaxation of the

problem if the value of bk for this solution is known. During this procedure, the profit of

this set and the total profit are updated accordingly. The above analysis implies the

following result:

Proposition 7.2: The optimal solution to the linear relaxation of MIMCKFE contains at

most one fractional-valued binary variable from each disjoint variable set.

Proof: Assuming that bk is known, the values of the decision variables of set k in the

optimal solution to the linear relaxation of MIMCKFE can be found by solving the

following problem:

This is a LMCK problem. There is one multiple choice constraint for each of the

variables ykj and one multiple choice set that contains all continuous variables xki.

Variables xki and ykj are considered fractional if 0 < xki < lk and 0 < ykj < 1, respectively.

Moreover, the optimal solution to the LMCK contains at most two variables with a

fractional value (see Pisinger, 1995a). If however the LMCK has two fractional-valued

variables they must belong to the same multiple choice set (see Pisinger, 1995a). Since
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each variable ykj forms its own multiple choice set of cardinality 1, the above result

follows.             .

A similar procedure can be used to find the solution that results when the cost of a

set is decreased from some initial positive value. Variables from this set are now

decreased in the exact reverse order in which they were originally increased. Consider the

variable set shown in Figure 7.1 and assume that the current solution is xkm = lk, ykr = 1

and ykt =1, with bk = ckmlk + dkr + dkt. If bk is decreased, initially xkm will be decreased. At

the same time, xkl is increased, since xkm replaced xkl when it was originally increased.

When bk = ckllk + dkr + dkt, we have xkl = lk, ykr = 1 and ykt = 1. If bk is decreased further, ykt

has to be decreased. Variable ykt decreases to 0 as soon as bk drops to ckllk + dkr. To

distinguish it from the previous move, we call this a backward move applied to set k.

Let's assume now that we wish to find the optimal solution to the linear relaxation

of MIMCKFE when the equity constraints are ignored. To optimally allocate the total

available budget b to all sets, a similar procedure as above can be applied. The only

difference is that the next variable selected for increase is always the one with the highest

slope among all variables that haven't been increased to their highest value yet, 1 for a

binary variable and lk for a continuous variable. Once a variable is increased to its highest

value, it is not eligible to be increased again. During this procedure, besides updating the

budget residual (the remaining budget that has not yet been allocated) and the total profit,

the cost of each variable set should also be updated accordingly. An iteration is carried

out exactly as in the case when a forward move is applied to a set.

To speed up the above procedure, a master list is constructed that contains the

variables of all sets arranged in non-increasing order of their associated slopes. This list
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can be easily constructed by merging all the individual lists of sets, since the variables of

each set are already increased in non-increasing order of their slopes in the associated list.

The information regarding the next variable from any set that should be increased after

each iteration is now directly obtained from this master list.

To find the new solution that results when the total available budget b decreases

from some initial value, a backward move can similarly be applied to the whole problem.

The variable selected for decrease is the one with the lowest slope among all variables

that have a positive value. An iteration in this case is carried out exactly as in the case

when a backward move is applied to a set. During this procedure, besides updating the

budget residual and the total profit, the cost of each variable set should also be updated

accordingly. As before, the procedure can be simplified using the master list of variables

that is constructed as explained above.

The above discussion suggests that, starting from a partial solution of a set k with

initial cost bk, it is possible to find the new solution of this set for a different value of bk,

without having to apply the procedure for increasing variables from scratch. Similarly,

starting from a solution to the whole problem with initial total budget b, it is possible to

find the new solution for a different value of b, without having to apply the procedure for

increasing variables from scratch. The new solution can always be obtained by

performing forward or backward moves, utilizing the variable lists of the problem. The

resulting savings in computational effort can be very substantial, especially for problems

with a large number of decision variables.

When the equity constraints are included, the above procedure can be modified as

follows in order to find the optimal solution to the linear relaxation of MIMCKFE. A



Chapter 7:    The 0-1 Mixed Integer Knapsack Problem with Linear Multiple Choice and Equity Constraints

141

forward move is applied to each set to bring its cost up to L. Then, the remaining budget

residual is allocated to all sets by applying a forward move to the whole problem and

ensuring that the cost of a set does not exceed the upper limit, U.

During a forward move applied to the whole problem, the budget allocation to a

set should terminate when one of the two following stopping conditions is met. The first

condition is when the cost of this set becomes equal to U and the second when the budget

residual decreases to 0. In the first case, no additional budget amount can be allocated to

this set, since this will make the problem infeasible. Therefore, the procedure switches to

another set and the forward move continues with another variable from that different set.

In the second case, the move terminates because the optimal solution for the linear

relaxation of the problem has been reached. The situation is similar when a backward

move is applied to a set. Unless the stopping condition is met at the same time that the

variable being modified gets a rounded value (i.e., equal to the length of the set if it is

continuous, or equal to 1 if it is binary), the iteration will not be complete. As a result,

this variable will have a fractional value. We call this fractional-valued variable that was

modified last from a set, the critical variable of this set.

In the case of a binary fractional-valued variable, the critical variable is uniquely

defined. On the other hand, when the value of a continuous variable changes and this is

not the first continuous variable from the associated list Lk, then the value of the previous

continuous variable in this list is also changing at the same time. Ignoring the binary

variables of this set, these two continuous variables are adjacent in Lk. The critical

variable is always the rightmost of these two variables (the one with the smallest

associated slope). For example, in Figure 7.1, xkj will always be the critical variable of set
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k if the move terminates while xkj is increased replacing xki or decreased while xki is

increased. Of course, the critical variable of a set can also have a rounded value. This

happens when the variable being modified takes a rounded value simultaneously with the

time that the stopping condition is met.

7.3.2 A Branch and Bound Algorithm

The algorithm developed for MIMCKFE is a branch and bound solution

procedure that utilizes the variable lists introduced above. It works by relaxing and

enforcing successively the integrality constraints of the problem. The solution to the

linear relaxation of the subproblems that arise is obtained by using these variable lists to

perform forward and backward moves as explained above. One of the fractional-valued

critical binary variables is always the variable selected for branching.

Initially, the algorithm eliminates the dominated continuous variables and

constructs the individual list of variables for each set, from which the master list is

constructed. Then, using these lists, it finds the optimal solution that results when each

set is allocated a resource amount which is equal to the lower limit, L. This amounts to

finding the critical variable of each set when its cost is equal to L. At this solution, the

budget residual is equal to b - rL, where r = |S|. Now, the cost of each set belongs to the

interval of uncertainty. Thus, the allocation of the remaining budget can continue by next

increasing  the variable with the highest slope that hasn't been yet increased to its highest

value. The cost of a set should not exceed the upper limit U, to ensure that the equity

constraints are not violated. Therefore, as soon as the cost of a set becomes equal to U, no
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more resource units can be allocated to this set. The forward move terminates when the

budget residual decreases to 0, or when the costs of all the sets become equal to U, or

when there are no remaining variables with a positive associated slope that can be

increased.

The solution derived by using the above procedure is optimal for the linear

relaxation of the MIMCKFE. If the critical variable of every set is continuous, then this

solution is also optimal for the MIMCKFE. If not, we branch on one of the fractional

valued binary variables of this solution. In order to find the solution to the linear

relaxation of the two subproblems that arise by setting this variable to 0 or 1, we use the

following result:

Proposition 7.3: When a binary variable is set to 0 or 1 and therefore excluded from

Problem MIMCKFE, the order of the remaining variables in each variable list remains

unchanged.

Proof: The exclusion of a binary variable does not affect in any way the associated slope

of any of the remaining variables, since this variable is a multiple choice set by itself.

Therefore, when this variable is excluded, the order of the other variables in the lists

remains unchanged, since this order depends solely on each variable's associated slope.         .

When we branch on one of the fractional-valued binary variables by setting it to 0

or 1, we can use Proposition 7.3 to find the solution to the linear relaxation of the two

subproblems that arise as follows. For the left subproblem in which this variable is set to

0, initially the cost of the set containing this variable and the total profit decrease while

the budget residual increases. A check on whether the new cost of this set violates the

equity constraints is made first. If this cost does not decline below L, a forward move
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does not need to be applied to this set. If is does, it must be brought up to L again. This is

done by applying a forward move to this set starting with the current solution, until its

cost becomes equal to L. The variable that was just set to 0 is now excluded from the

associated list and the variable immediately succeeding it is next considered for increase.

The new critical variable is stored after this forward move terminates.

After the cost of this set is brought within the limits L and U again, and assuming

that there is still a positive budget residual, this can be used to improve the current

objective function value. Therefore, using the master list, a forward move is applied to

the whole problem. The critical variable with the highest slope among all sets is the next

variable considered for increase. This move continues until either the budget residual

declines to 0, or the cost of all sets becomes equal to U, or no variable  with a positive

associate slope that can be increased exists.

When a binary variable is set to 1, a similar procedure is followed. In this case,

the cost of the set containing it and the total profit increase, while the budget residual

decreases. A check is made on whether the cost of this set has exceeded the upper limit,

U. If it has, a backward move is applied to this set until its cost equals U again. To ensure

that the new solution is optimal, variables from this set are decreased in the exact reverse

order in which they were originally increased. If the budget residual is negative after this

move, a backward move to the whole problem is applied in order to make the problem

feasible with respect to the budget constraint. The variable that should be decreased is the

one with the worst associated slope among all critical variables. This variable is obtained

efficiently using the master list. During this procedure the cost of a set is not allowed to

drop below L, in order to ensure that the problem remains feasible.



Chapter 7:    The 0-1 Mixed Integer Knapsack Problem with Linear Multiple Choice and Equity Constraints

145

If after setting a binary fractional variable to 0 or 1, the cost of this set in the

associated subproblem cannot be brought within the limits L and U by increasing or

decreasing variables from this set, then this subproblem is infeasible and should be

fathomed. This happens when the constraints that have been added as a result of

branching eliminate all the solutions for which the cost of this set belongs to the interval

of uncertainty.

At each iteration, the algorithm selects for exploration the tree node with the

maximum upper bound on the objective function value of the original problem. This

strategy is used in order to keep the size of the tree as small as possible. This upper bound

is known once the solution to the linear relaxation of this node has been obtained. If the

solution at this node satisfies the integrality solutions, then this solution is also optimal to

the original problem. If not, one of the fractional-valued binary variables is chosen for

branching. The two subproblems that arise from setting this variable to 0 or 1 are added

to the tree node and the solution to their linear relaxation is found using the same

procedure. By using the special relationship between parent and children subproblems the

optimal solution to the linear relaxation of new subproblems is obtained fast.

Additionally, the memory usage is low, since the decision variable values are not stored

explicitly. This is a consequence of the special structure of the problem.

The performance of the algorithm is strongly affected by the strategy used for

branching. Several experiments were performed to identify the best rule to use. The

criteria used were based on characteristics of the binary variables such as their cost, their

profit, their associated slope, their fractional value, and their relative order in the variable

lists of the problem. It was found that the best performing rule was to branch on the
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variable with the largest cost among all fractional-valued binary variables of the current

solution. Although this is not very intuitive, a possible explanation is that this rule allows

the algorithm to move away from local optima and avoid wasting time exploring

localized regions.

For each subproblem, there exists an upper bound which is tighter than the

objective function value of the associated linear relaxation solution. This bound is

obtained by imposing integrality on each of the critical binary variables of this linear

relaxation solution and is an extension of the upper bound developed for the 0-1

Knapsack Problem by Martello and Toth (1977). The existence of two bounds B1 and B2

is proven next and then this tighter bound is derived as the maximum between B1 and B2.

Consider the solution to the linear relaxation of a subproblem of the branch and

bound tree. If this solution is not feasible, then it contains one or more binary critical

variables with a fractional value; let ykj be one of them that belongs to set k and let bk be

the cost of this set in this solution. Let also uLP denote the objective function value of this

solution.

Since ykj is a binary variable, it has to be set to 0 or 1. Consider the case when ykj

is set to 0. Let sb be the highest associated slope of any variable besides ykj that belongs to

a set with cost less than U and hasn't yet been increased to its highest level  (if sb < 0, let

sb  = 0). This is the variable that would be increased next if additional resource units were

available. If bk – dkjykj < L, set B1 = uLP – qkj ykj + (L- bk + dkjykj)skn +(bk - L)sb, where skn is

the associated slope of the variable that immediately succeeds ykj in list Lk. Otherwise, set

B1 = uLP – qkjykj + (dkjykj)sb.
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Consider now the case when ykj is set to 1. Let sw be the lowest associated slope of

any variable besides ykj that belongs to a set with cost greater than L and has a positive

value. This is the variable which would be decreased next if the budget residual of the

current solution was negative. If bk + dkj (1- ykj) > U, set B2 = uLP + qkj (1 - ykj) - (bk +

dkj(1 - ykj) - U)skp - (U - bk)sw, where skp is the associated slope of the variable

immediately preceding ykj in list Lk. Otherwise, set B2 = uLP + qkj(1 - ykj) - dkj (1 -ykj)sw.

Proposition 7.4: B = max (B1,B2) is a valid upper bound to the optimal objective

function value of Problem MIMCKFE.

Proof: Consider the two subproblems that arise when we choose to branch on ykj. If the

budget residual of the current linear relaxation solution is positive then bk = U (otherwise

ykj would be increased further) and there are no variables with a positive slope that can be

increased from another set. For the left subproblem in which ykj is set to 0, the total profit

decreases initially by qkjykj and the budget residual increases by dkjykj. If bk - dkjykj < L,

then from the budget recovered an amount equal to (L - bk + dkjykj) must be allocated to

the same set in order to bring its cost up to L again. Thus, in the best case, the total profit

will increase by (L - bk + dkjykj)skn, since skn is the highest slope of any variable from this

set besides ykj that hasn't been increased to its highest value (if no such variable exists,

then this subproblem is infeasible). After this, a budget amount equal to at most bk - L can

be used to improve the current objective. Since sb is the highest slope of any variable

besides ykj that can be increased next, the  result for B1 follows. If bk - dkjykj > L, the

derivation for B1 remains the same but the step for bringing bk up to L must be skipped.

For the subproblem in which ykj is set to 1, the total profit increases initially by qkj(1 - ykj)

and the budget residual decreases by dkj(1 - ykj). If bk + dkj(1 - ykj) > U, the budget amount
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that has to be deallocated from set k in order to bring its cost down to U again is bk + dkj(1

- ykj) - U. Thus, in the best case, the total profit will decrease by (bk + dkj(1 - ykj) - U)skp,

since skp is the lowest slope of any variable from this set besides ykj that can be decreased

(if no such variable exists, then this subproblem is infeasible). After this, a budget

amount of U - bk still needs to be recovered. Since sw is the lowest slope of any variable

with a positive value besides ykj that can be decreased, the result for B2 follows as well. If

bk + dkj(1 - ykj) < U  the derivation for B2 remains the same but the step for bringing bk

down to U must be skipped. Since ykj has to be set to 0 or 1, B = max(B1,B2) is a valid

upper bound on the optimal solution of the current subproblem.            .

Proposition 7.5: B < uLP

Proof: To prove that this inequality holds, it is sufficient to show that skn < skj < skp, and if

L < bk < U, that sb < skj < sw, where skj = qkj/dkj is the associated slope of ykj. This is

because B1 < uLP is equivalent to qkjykj > (L – bk + dkjykj)skn + (bk - L)sb when bk – dkjykj <

L, and equivalent to qkjykj > (dkjykj)sb when bk – dkjykj > L. Therefore, if the above

expressions for the variable slopes hold, we have (L - bk + dkjykj)skn + (bk - L)sb < (L -bk +

dkjykj)skj + (bk - L)skj = (dkjykj)skj = qkjykj => B1 < uLP. Similarly, B2 < uLP is equivalent to

(bk + dkj (1 – ykj ) - U)skp + (U - bk)sw > qkj (1 – ykj) when bk + dkj(1 - ykj) > U, and

equivalent to dkj (1 – ykj )sw > qkj (1 - ykj) when bk + dkj(1 - ykj) < U. Therefore, if the above

expressions for the variable slopes hold, we have (bk + dkj (1 - ykj) - U)skp + (U - bk)sw >

(bk + dkj (1 – ykj) - U)skj + (U – bk)skj = dkj (1 - ykj)skj = qkj (1 - ykj) => B2 < uLP. The

inequalities skn < skj < skp are clearly true, since the variables in Lk are arranged in non-

increasing order of their associated slopes. To prove that the inequalities sb < skj < sw are

true when L < bk < U, note that sb is the slope of the variable that can be increased next. If
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sb > skj, then this variable would have been increased to its highest value before ykj could

be increased. Therefore, we have sb < skj. Similarly, sw is the slope of the variable with a

positive value that should be decreased next. If sw < skj, then ykj would have been

increased to its highest value before this variable could be increased. Therefore, we have

sw > skj.            .

By following the same procedure as above an upper bound for each fractional-

valued binary critical variable of the current linear relaxation solution can be obtained.

Clearly, the lowest of these bounds provides the tightest bound on the objective function

value of the current subproblem. This is the upper bound used in Algorithm MIMCKFE.

To introduce this algorithm, the following additional notation is needed:

bi
k = cost of set k in subproblem i,

bi
res = budget residual of subproblem i,

ui = objective function value of the solution to the linear relaxation of subproblem i,

t = index for labeling the nodes of the B&B tree,

A = set containing the active nodes of the B&B tree, i.e., the nodes yet to be explored,

I0(t) = set containing the indexes of the binary variables set to 0 at node t,

I1(t)= set containing the indexes of the binary variables set to 1 at node t.

Algorithm MIMCKFE

Step 0 (Preprocessing)

For each variable set k, construct the list Lk containing all the nondominated continuous

variables and the binary variables of this set and define their associated slopes. While

maintaining all individual variable lists, create a master list ML by merging the variables
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of all these lists in non-increasing order of their associated slopes. Initialize the objective

function value u1 and the values of all variables to 0.

Step 1 (Allocation of L to each set)

Apply a forward move to each set until the cost of all sets becomes equal to L. If b < rL

or the variable list of a set is scanned completely before its cost becomes equal to L, the

problem is infeasible. Otherwise, store the critical variable of each set, initialize b1
k = L,

for all k in S, b1
res = b - rL and store the objective function value of this solution in u1.

Step 2 (Linear relaxation of original problem)

Starting with the solution from Step 1 above, perform a forward move to the whole

problem until either b1
res drops to 0 or the cost of all sets becomes equal to U, or no

variable with a positive slope that can be increased exists. The cost of a set should not

exceed U during this procedure. Update the critical variables and the costs of the sets and

the values of b1
res and u1 accordingly.

Step 3 (Initialization of the B&B tree)

Initialize the index of the root of the B&B tree to 1. Set A = {1}, I0(1) = ∅  and I1(1)= ∅ .

Step 4 (Branching)

Let t0 be the smallest unused index for labeling tree nodes and t* be the tree node in A

with the maximum upper bound to the optimal objective function value of the problem.

If this node has no fractional-valued binary variables, STOP; the solution at node t* is

optimal for the original problem. Otherwise, branch on a fractional-valued binary

variable ymr, generating two new subproblems and their associated nodes. Label the nodes

t0 and t0 +1, corresponding to subproblem with ymr = 0 and ymr = 1, respectively. Set I0(t0)

= I0(t*) U{mr}, I1(t0) = I1(t*), I0(t0+1) = I0(t*), I1(t0+1) = I1(t*) U{mr}and A = A -{t*}U
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{t0}U {t0+1}. Variable ymr is excluded from the variable lists of all the subproblems of

the current subtree.

Step 5 (Linear relaxation of subproblem t0)

Set bt0res = bt*
res + dmrymr and ut0 = ut* – qmrymr (results obtained after setting ymr to 0). Set

bt0k = bt*
k, for all k in S, k ≠  m and bt0m = bt*

m – dmrymr. If bt0m < L, perform a forward

move on set m to bring its cost up to L. If the list of this set is scanned completely before

its cost becomes equal to L, the node is infeasible; fathom it by removing its index from

the set of active nodes and go to Step 4. Otherwise, perform a forward move on the whole

problem until either bt0res decreases to 0 or the cost of all sets becomes equal to U, or no

variable with a positive slope that can be increased exists. Update the critical variables

and the costs of the sets and the values of bt0res and ut0 for the new solution found.

Step 6 (Linear relaxation of subproblem t0+1)

Set bt0+1
res = bt*

res - dmr(1 - ymr) and ut0+1 = ut* + qmr(1 - ymr) (results obtained after setting

ymr to 1). Set bt0+1
k = bt*

k for all k in S, k ≠  m and bt0+1
m = bt*

m + dmr(1 - ymr). If bt0+1
m > U,

perform a backward move on set m to bring its cost down to U. If the list of this set is

scanned completely before its cost becomes equal to U, the node is infeasible; fathom it

by removing it from the set of active nodes and go to Step 4. Otherwise, perform a

backward move on the whole problem until either bt0+1
res becomes non-negative or no

variable with a positive value that can be decreased exists. If bt0+1
res is still negative after

this move, then the current node is infeasible; fathom it by removing its index from the

active nodes and go to Step 4. Otherwise, update the critical variables and the costs of the

sets and the values of bt0+1
res  and ut0+1  for the new solution found and go to Step 4.            .
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To obtain the values of the decision variables at the termination of the Algorithm

MIMCKFE, the optimal node g and the values of the critical variables of this solution are

needed (note that the critical variables are continuous, otherwise the solution would  be

infeasible). If a list Lk doesn't have a critical variable (i.e., if Lk has been scanned

completely), an artificial variable is appended as critical at the end of the list with a value

equal to 0. The values of the decision variables are obtained as follows. All binary

variables appearing in Lk to the left of the critical variable have a value of 1, unless their

index is in the set I0(g). Similarly, all binary variables in Lk appearing to the right of the

critical variable, have a value of 0, unless their index is in set I1(g).

The values of the continuous variables for set k are determined as follows: If the

critical variable is the first continuous variable in Lk, then no other continuous variable

from k will have a positive value. If not, the only other continuous variable with a

positive value will be the one appearing to the left and closest to the critical variable. The

value of that variable is equal to the right hand side of the associated multiple choice

constraint minus the value of the critical variable.

7.4 A Heuristic for MIMCKFE

In this section an efficient heuristic that was developed for the MIMCKFE is

presented. This heuristic is a natural extension of a primal heuristic for the 0-1 Knapsack

Problem (see Nemhauser and Wolsey, 1988).

Similarly with the Algorithm MIMCKFE, the heuristic finds initially the linear

relaxation solution that results when a budget amount equal to L is allocated to each set.

Next, the heuristic increases all the fractional-valued binary variables to 1 and updates
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accordingly the total profit and the budget residual. Note that this could result in a set

whose cost exceeds U or in a negative budget residual. If the cost of all sets is less than U

and if the budget residual is non-negative, then the current solution is feasible for the

original mixed integer optimization problem. Next, the heuristic allocates the remaining

budget residual (if positive) by increasing variables that have not been increased to their

highest value in the order they appear in the master list. While continuous variables are

increased as usually, a binary variable that cannot be increased to its highest value

without violating the equity constraints, is skipped. The procedure continues until either

the budget residual drops to 0 or the cost of all sets becomes equal to U, or no variable

with a positive slope that can be increased exists.

After termination of this forward move, the heuristic does a backward pass in

order to reduce the cost of sets whose cost is possibly more than U, or to recover a

missing budget amount in case that the current budget residual is negative. If the budget

residual is negative, the master list is scanned backwards and variables are decreased

until it becomes non-negative again. If the cost of a set is more than U, then variables

from this set are decreased until its cost lies within the interval of uncertainty again.

During any of these two moves, a binary variable which, when decreased to 0, reduces

the cost of the associated set to less than L is skipped.

If after termination of the heuristic the budget residual is still negative or the cost

of one or more sets does not lie in the interval of uncertainty, then the current solution is

infeasible. The likelihood that such a case will arise depends strongly on the input

parameters of the problem. It is possible to develop a more sophisticated heuristic that

would reduce this likelihood. In this work this was not pursued because the information
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obtained from such a heuristic solution cannot be used in the branch and bound

algorithm.

7.5 The Problem with Unknown Interval of Uncertainty

In this section the second variant of the problem (Problem MIMCKE) is

considered, where the interval of uncertainty is unknown. This is a much harder problem

to solve than the previous version, because this interval has to be identified in order to

find the optimal solution and there is an infinite number of choices for its exact location.

Clearly, Propositions 7.1, 7.2 and 7.3 carry over to MIMCKE, since their validity

does not depend on whether the interval of uncertainty is known or not. Some additional

important properties for Problem MIMCKE are developed next.

The maximum resource amount, MCk, allocated to a set k is when all the binary

variables of set k take a value of 1 and, additionally, the continuous variable, xkq, with the

largest cost takes a value which is equal to the length of this set. Thus, we have: MCk =

ckqlk + ∑
∈ kDj

kjd . As with Problem LMCKE, let again MCmin = k
Sk

MCmin
∈

.With these new

definitions, Corollaries 6.1, 6.2 and 6.3 and Proposition 6.2 carry over to Problem

MIMCKE:

Corollary 7.1: The cost of any single set at the optimal solution of MIMCKE is at most

MCmin + f.

Proposition 7.6: The cost of any single set at the optimal solution of MIMCKE cannot be

larger than f
r

1r
r
b −+ .

Proof: Same as the proof of Proposition 6.2.            .
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Corollary 7.2: Assuming that the unused budget at the optimal solution of MIMCKE is

equal to 0, the cost of any single variable set lies in an interval centered at b/r whose

width is less than but tends to 2f as r goes to ∞ .

Corollary 7.3: The minimum of MCmin + f and b/r + f(r-1)/r is a valid upper bound, UB,

on the cost of any single variable set at the optimal solution of MIMCKE.

To develop an algorithm for the MIMCKE, the algorithm presented above for the

MIMCKFE was embedded in a binary search procedure. This tries to identify the interval

of uncertainty [L,U] by identifying its midpoint. It is clear that the midpoint of the

interval of uncertainty lies in the interval [f/2, UB-f/2]. The algorithm performs a binary

search for the midpoint in this interval.

During this procedure, new subproblems are generated and stored in a binary

search tree when bound constraints are imposed on the value of this midpoint. In turn,

these constraints impose specific bounds on the optimal cost of each variable set.

Therefore, the resulting subproblems can be solved using the algorithm discussed above

for the MIMCKFE. If the maximum difference between the costs of any two sets at a

node of the binary search tree is no larger than f, then this node is feasible with respect to

the equity constraints. Therefore, this solution can be compared with the best feasible

solution that has been found so far. If it is better, it becomes the new best solution,

substituting the previous one. If not, it is eliminated from further consideration. On the

other hand, if this solution is not feasible with respect to the equity constraints, further

exploration is needed. Therefore, starting from this node, new subproblems have to be

generated with narrower widths for the unknown interval.
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To illustrate this, suppose  we want to check whether at the optimum the midpoint

belongs to the interval [f/2,v] or to [v,UB-f/2], where v is some known value. Depending

on the result of this check, we will be able to eliminate out of the two above intervals, the

one that doesn't contain this midpoint. To do this, we relax the constraint U – L < f from

the original problem and we replace the values of L and U with the values 0 and v + f/2,

respectively. Clearly, this is equivalent to restricting the midpoint of the interval of

uncertainty to belong to the interval [f/2,v]. The resulting problem (left child) is a

MIMCKFE problem and can be solved using the algorithm introduced above. Although

the width of [0,v+f/2] may be more than f, the solution to this problem is an upper bound

to any feasible solution in which the midpoint is contained in [f/2,v]. Therefore, if this

upper bound is not better than the objective function of the best feasible solution found so

far, this node can be fathomed. If not, this node is added to the equity tree.  For the

second problem (right child), the values of L and U are set to v - f/2 and UB, respectively

and the procedure is similar. 

In the situation described above, neither of the two subproblems added to the

equity tree are guaranteed to give a feasible solution. This is because the width of the

intervals [0,v+f/2] and [v-f/2,UB] will not necessarily be less than f. Therefore, in certain

cases we also have to solve the problem in which the midpoint is equal to v, i.e., the

problem in which the values of L and U are set to v-f/2 and v+f/2, respectively. Such

problems can be used to update the current best feasible solution because their solution

satisfies the equity constraints by default.

From the above analysis it follows that, each time we pivot on a value v, there are

three candidate nodes that may be added to the equity tree. The first (left child) is the one
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for which the midpoint is less than v. The second one (middle child) is the one for which

the midpoint is equal to v. The third (right child) is the one for which the midpoint is

greater than v. As discussed above, not all three nodes have to be solved at each iteration.

The binary search procedure would normally start by checking the value of the

unknown midpoint versus the value (UB-f)/2 + f/2, since this is the value that divides the

width of the initial interval in half. Computational experience has indicated that most of

the times the optimal value of this midpoint is relatively close to the average b/r.

Therefore, the performance of the algorithm is improved when this is the first value used

to divide the initial interval by half. The size of the binary search tree (equity tree) is

limited as a result of this decision. Of course, this is only done if b/r < UB-f/2. If not, then

the first value used is (UB-f)/2 + f/2.

The algorithm uses intelligently the special structure of the problem. More

specifically, the following rules provided significant time savings and considerably

improved  the performance of the algorithm.

1. If the solution to a parent node of the equity tree is feasible for one of its children

nodes, then it is also the optimal solution to this child node. This is because the set of

feasible solutions of a child node is a subset of the set of feasible solutions of its parent

node.

2. If the solution to a left or to a right subproblem of the equity tree is feasible to the

middle subproblem then it is also the optimal solution for this middle subproblem. This is

because the set of feasible solutions of a middle subproblem is a subset of the set of

feasible solutions of both its sibling subproblems.



Chapter 7:    The 0-1 Mixed Integer Knapsack Problem with Linear Multiple Choice and Equity Constraints

158

3. For the same reason as above, a middle node is added to the equity tree and solved

only if none of its two sibling subproblems was fathomed before.

4. The branch and bound search procedure at a node of the equity tree is stopped if an

upper bound for this solution is found which is smaller than the objective value of the

best solution that has been found so far.

As the algorithm proceeds, the interval containing the unknown midpoint

becomes smaller and smaller. Similarly, the objective function value of the best feasible

solution that has been found so far gets closer to the optimal objective function value of

the problem. Of course, the exact value of this midpoint will not be found unless at some

point we use exactly this value to pivot and divide the search interval. Therefore, the

binary search concludes as soon as a preset relative accuracy on the optimal objective

function value has been achieved. Note that, although the search is performed based on

the midpoint of the interval of uncertainty, the desired accuracy refers to the optimal

objective function value.

Based on the above analysis, a brief outline of the Algorithm MIMCKE that was

developed for the problem is presented next. Note that the variable lists constructed in

Step 0 of Algorithm MIMCKFE need only to be constructed once.

Algorithm MIMCKE

Step 0 (Preprocessing)

Compute the upper bound UB. The unknown midpoint lies in the interval [f/2,UB-f/2].

Set v = b/r. If v > UB-f/2, set v = (UB-f)/2 + f/2. Using Algorithm MIMCKFE, solve the

subproblems in which the midpoint is smaller, equal and larger than v, respectively, and

add them to the equity tree. Update the Incumbent accordingly.
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Step 1 (Iteration)

Select the equity node with the maximum upper bound from the equity tree

If the preset accuracy is not met or this solution is (equity) infeasible do{

- divide the interval of the node selected into two equal intervals

- add the three associated subproblems to the equity tree;

- solve each of these three subproblems using Algorithm MIMCKFE

- update the Incumbent if necessary;

- go to the beginning of Step 1 again.

}end if

Otherwise, STOP the Incumbent solution is optimal.            .

7.6 Computational Experience

In this section the computational complexity of Algorithm MIMCKFE is

examined. Then, the experimental design and computational results that were obtained

from testing both algorithms are presented and their performance is compared to that of a

commercial package for mixed integer programming (LINGO, 2001). This analysis

provides important insights into the structure of the problem and the behavior of the

algorithms that can be valuable in future research.

7.6.1 Computational Complexity

Let Nk and Bk be the number of continuous and binary variables, respectively, in

set k, N = ∑
∈ Sk

kN , B = ∑
∈ Sk

kB , Nmax = 
Sk

max
∈

Nk and Bmax = 
Sk

max
∈

Bk. The nondominated
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continuous variables of a set k can be identified in time O(Nk log Nk) by a suitable

algorithm for finding the convex hull of Nk points in two dimensions. The binary

variables of set k can be arranged in non-increasing order of their associated slopes in

time O(Bk log Bk). Then, all the variables of this set can be merged in a single list in time

O(Nk + Bk). Hence, the time needed to construct the variable list of set k is O((Nk + Bk)

max (log Nk, log Bk). Thus, the time needed to construct the variable lists of all r sets is

O( ∑
∈ Sk

[(Nk + Bk) max (log Nk, log Bk)] ) = O((N + B) max (log Nmax, log Bmax)). Once

these lists are constructed, the time needed for merging them to obtain the master list ML

is O((N + B) log r) (see Cormen et al., 2001). Therefore, the total time required is O((N +

B) max (log Nmax, log Bmax, log r)).

The work needed in Step 0 of the Algorithm MIMCKFE dominates the work

needed in Steps 1 and 2, which is linear in the total number of variables. Step 3 requires

constant time and Steps 5 and 6 require time which is linear in the total number of

variables. Together with Step 4 however, in the worst case, Steps 5 and 6 are executed

exponentially many times, since the maximum number of subproblems generated is an

exponential function of the total number of binary variables. Note that the time required

to find the upper bound of Proposition 7.4 is O(r), since it takes constant time to find it

based on one fractional-valued binary variable and there are at most r such variables.

For the heuristic procedure, the dominating operation is the construction of the

variable lists which requires time O((N + B) max (log Nmax, log Bmax, log r)). Once these

lists are constructed, the time required to do the forward and backward pass is linear in

the total number of variables.
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7.6.2 Experimental Design

The above algorithms were coded in C/C++ and tested on a Pentium IV/1.8 GHz

processor. Various combinations for the number of sets as well as the number of

continuous and binary variables within each set were used. For all problems, the number

of continuous variables was equal to the number of binary variables in each set and this

number was kept constant in all sets.

Parameters pki, qkj, cki and dkj were uniformly distributed between 0 and Nk. While the

following tables show the initial mix of binary and continuous variables, the problems

that result after elimination of the dominated variables, contain significantly fewer

continuous variables. This is because the expected percentage of integer dominated

variables within a multiple choice set increases from 70% when Nk = 10, to 96% when Nk

= 150 (Sinha and Zoltners, 1979). This reduction in the number of continuous variables

worsens the performance of the algorithm in a similar manner as already explained for

Problem MIMCK. Parameter lk was set equal to 1 for all multiple choice sets. Finally,

budget b was set at )maxmin(
2
1
∑
∈ ∈∈

+
Sk

ki
Ri

ki
Ri

cc
kk

+ 0.25BNk. Thus, the average budget

amount available for allocation to each multiple choice set and each binary variable was

0.5Nk and 0.25 Nk, respectively. This decision for the average budget amount allocated to

each binary variable ensures a tight budget constraint, i.e., a scarce budget.

Computational experience indicates that the problems generated this way show more

computational interest.

The performance of the branch and bound algorithm for the MIMCKFE is

affected by a number of different parameters. The location of the interval [L,U] is very
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important. If U lies to the left of the value b/r, then the optimal solution has a positive

(unused) budget residual. If on the other hand L lies to the right of the value b/r, the

problem is infeasible, since rL > b. Therefore, to generate interesting instances for

Problem MIMCKFE, the midpoint of the interval [L,U] should be relatively close to b/r.

For all computational results presented in the next tables, the midpoint of this interval

was set exactly equal to b/r.

The width of the interval [L,U] also affects the performance of the algorithm,

mainly because it affects the likelihood that a solution violates the equity constraints if

these are ignored. In other words, the larger the width of this interval, the more likely it is

that the equity constraints will be satisfied by an optimal solution to the relaxed problem

without equity constraints. As a result, the difficulty of the problem seems to increase as

the width of this interval decreases. It should also be noted that, for similar reasons, the

difficulty of the problem seems to decrease when only one of the two bounds, L and U, is

imposed.

7.6.3 Computational Results

Tables 7.1 and 7.2 present the computational results for Algorithm MIMCKFE.

For each problem size, 10 different instances were tested. The decision for the parameters

r, Bk and Nk was made in such a way that the complete behavior of the problem is

depicted. The value of L was set equal to 0.8 b/r and the value of U was set equal to 1.2

b/r. This way, the width of the interval [L,U] was equal to 0.4 b/r and the maximum

allowable difference on the costs of any two sets varied between 0.005b for the problems

with r = 80 and 0.02b for the problems with r = 20.
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Table 7.1 presents results regarding the quality of the solutions obtained. The first

two columns (LP Avg and LP Max) present the average and the maximum difference

between the objective function value of the linear relaxation of the problem and the

optimal value as a relative percentage. The next two columns (Heur Avg and Heur Max)

present the same results for the heuristic solution. For instances it could not solve, the

algorithm was stopped as soon as the limit of 50,000 tree nodes was reached. The next

column (Gap Avg) presents the average relative percentage by which the upper bound

obtained before the algorithm was stopped differed from the optimal objective function

value. This result was computed over the number of instances for which this

performance was exhibited for each problem size. This number is shown in the last

column of Table 7.1 (# failed).

Table 7.2 presents results for the CPU time needed to obtain the optimal solution

using the various algorithms and the size of the corresponding branch and bound tree for

the algorithm proposed. The first two columns (LIN Avg and LIN Max) present the

average and maximum time needed by LINGO. The next two columns (MIM Avg and

MIM Max) show these times for Algorithm MIMCKFE while the next two (Heur Avg

and Heur Max) for the heuristic. The last two columns (Nodes Avg and Nodes Max)

present the average and maximum size of the branch and bound tree. Note that unsolved

instances were not included. The heuristic terminated with a feasible solution for all

instances tested.
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Table 7.1: Quality of the solutions obtained by the various algorithms for MIMCKFE

r Nk Bk

LP

Avg

LP

Max

Heur

Avg

Heur

Max

Gap

Avg

#

failed

(%) (%) (%) (%) (%)

20 100 100 0.00183 0.00479 0.00090 0.00213 0

20 200 200 0.00012 0.00020 0.00042 0.00140 0

20 300 300 0.00004 0.00008 0.00005 0.00016 0

20 400 400 0.00003 0.00006 0.00009 0.00045 0

40 100 100 0.00181 0.00507 0.00099 0.00375 0.00134 3

40 200 200 0.00006 0.00036 0.00009 0.00041 0.00004 1

40 300 300 0.00001 0.00002 0.00004 0.00008 0

40 400 400 0.00001 0.00001 0.00003 0.00007 0

60 100 100 0.00152 0.00372 0.00060 0.00168 0.00040 6

60 200 200 0.00010 0.00034 0.00008 0.00048 0.00003 2

60 300 300 0.00001 0.00001 0.00003 0.00016 0

60 400 400 0.00001 0.00004 0.00001 0.00002 0.00001 1

80 100 100 0.00162 0.00265 0.00058 0.00260 0.00043 8

80 200 200 0.00005 0.00035 0.00010 0.00079 0.00013 2

80 300 300 0.00003 0.00011 0.00005 0.00028 0.00002 2

80 400 400 0.00000 0.00000 0.00001 0.00002 0
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Table 7.2: CPU times (in seconds) for the various algorithms and

size of  the B&B tree of the proposed algorithm for MIMCKFE

r Nk Bk

LIN

Avg

LIN

Max

MIM

Avg

MIM

Max

Heur

Avg

Heur

Max

Nodes

Avg

Nodes

Max

20 100 100 2.4 4 2.565 15.690 0.028 0.030 4113 21929

20 200 200 5.7 12 3.238 26.576 0.061 0.070 3323 20811

20 300 300 9.5 15 6.461 20.031 0.102 0.120 2434 8637

20 400 400 22.1 87 17.963 133.660 0.143 0.220 4609 24631

40 100 100 6.5 12 1.509 4.406 0.065 0.140 3002 10149

40 200 200 11.1 14 0.922 3.014 0.122 0.140 1102 2663

40 300 300 17.5 22 0.928 2.334 0.202 0.230 1243 3507

40 400 400 30.0 39 2.201 10.233 0.289 0.321 1984 6385

60 100 100 9.5 10 1.395 1.973 0.088 0.110 3048 4885

60 200 200 19.1 27 1.311 4.235 0.193 0.230 1509 4451

60 300 300 34.6 91 21.733 160.595 0.306 0.321 5560 30091

60 400 400 51.4 82 15.256 93.672 0.435 0.461 3617 15151

80 100 100 16.0 17 5.760 9.636 0.115 0.130 9216 14231

80 200 200 24.1 35 4.585 14.771 0.258 0.290 4050 15959

80 300 300 57.0 124 29.623 213.075 0.413 0.431 5477 28545

80 400 400 63.9 96 10.528 62.676 0.576 0.620 2929 14265

A number of interesting observations can be made from Table 7.1. The linear

relaxation bounds are  extremely  tight for all  problem sizes. This is an implication of the

problem sizes tested. As the number of variables in each set increases, these bounds

become tighter. That is, for fixed r, the linear relaxation bounds become tighter as Nk and

Bk increase. This is due to two main reasons. On the one hand, the various sets tend to

resemble each other this way. On the other hand, there are more variables with similar

associated slopes within each set and therefore more combinations of variables that can

result in similar solutions. Thus, the gap between the objective function value of the
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linear relaxation and that of the exact solution decreases. The effect of increasing the

number of sets is not so apparent. It is clear from Proposition 7.2 that the number of sets

is directly related to the number of binary variables that have a fractional value at the

optimal solution of the linear relaxation of the problem. In general, the higher this

number is, the larger the gap between the objective function value of the linear relaxation

solution and that of the exact solution is expected to be.

The quality of the solutions obtained using the heuristic procedure is very high.

This is another implication of the problem sizes tested. The effectiveness of the heuristic

depends on the way that the total number of variables is distributed among the sets. The

heuristic solution is obtained mainly by rounding the critical binary variables of the

problem. As r decreases, the number of binary variables that are rounded decreases too.

Therefore, this is expected to improve the quality of this solution. On the other hand, it is

clear from Table 7.1 that, as the number of variables in each set increases, the quality of

the solutions obtained by the heuristic procedure improves too. This is mainly due to the

fact that the effect of rounding these variables becomes negligible, since there are many

more variables with similar associated slopes.

The distribution of the variables among the sets affects the performance of the

algorithm too. As can be seen from Table 7.1, the problem sizes where the algorithm

exhibits its worst performance are not random. In general, it is true that as r increases, the

likelihood that this worst case behavior will be exhibited increases too. This is an

implication of Proposition 7.2, since r is an upper bound to the total number of binary

variables that have a fractional value in the optimal linear relaxation solution. On the

other hand, the effect of increasing Nk and Bk is not as significant, since r always acts as a
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barrier to this number. It is clear from Table 7.1 that the worst case behavior is exhibited

for large values of r. It is also very interesting to note that, for fixed r, the number of

instances where the worst case behavior is exhibited increases as the values of Nk and Bk

decrease.

The results of Table 7.2 show a good average performance for Algorithm

MIMCKFE. This is however highly variable, in contrast to the behavior of LINGO which

seems to be more predictable. Certain instances require significantly more time for the

algorithm and have not been included.  For some problem sizes, Algorithm MIMCKFE

exhibits a better performance than LINGO, while for other, LINGO does. It should be

noted however that LINGO was able to terminate in reasonable time even for those

instances where Algorithm MIMCKFE exhibited its worst behavior.

The good performance of Algorithm MIMCKFE for some problem sizes is

mainly due to the tightness of the linear relaxation upper bounds. The algorithm exploits

the special structure of the problem and takes advantage of these bounds when they are

tight. Additionally, the algorithm is also able to obtain the optimal solution much faster

when the equity constraints at the root of the branch and bound tree are not binding for all

sets. This is because, in such cases, the number of binary variables with a fractional value

in the optimal linear relaxation solution is small.

The high efficiency of LINGO is mainly due to the use of lifting constraints to

tighten the linear programming relaxation. As a result, LINGO explores a much smaller

number of tree nodes. On the other hand, Algorithm MIMCKFE is much more efficient

in finding the linear relaxation solution to each subproblem of the branch and bound tree

due to the efficient specialized algorithm that solves these. The algorithm however, fails
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when it has to explore an exponentially large number of tree nodes. Valid inequalities

could not be used in Algorithm MIMCKFE, since this would have disallowed the

utilization of the specialized algorithm for the linear relaxation. How such inequalities

can be utilized to develop a more efficient algorithm is a topic that shows great interest

for future research.

Another characteristic of Algorithm MIMCKFE is that the upper bound on the

optimal solution decreases very slowly as the branch and bound tree is explored. This is

mainly due to the strategy used for selecting the next node to explore in the branch and

bound tree. The node with the largest upper bound among all active nodes is always

selected in order to limit the size of the tree. This strategy was preferable, since the

reoptimization of the tree subproblems is very fast and the memory usage by the

algorithm is very low.

It should also be noted that the performance of Algorithm MIMCKFE is good

when the solution provided by the heuristic procedure is also good. This is because the

various parameters of the problem have a similar effect on these two procedures. As

already mentioned, the likelihood that the heuristic procedure will terminate with a

feasible solution also depends strongly on these parameters. More specifically, this

likelihood increases as the value of r decreases and the values of Nk and Bk increase. The

value of r increases the number of binary variables rounded by the heuristic and therefore

it needs to be small in order for the resulting solution to be good. On the other hand, as

the number of variables in each set increases, the heuristic has a larger number of options

when making the necessary decisions.
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In the problem sizes of Tables 7.1 and 7.2, the number of sets is small compared

to the number of variables in each set. It turns out that r is a crucial parameter for the

difficulty of the problem. In fact, the performance of all algorithms worsens very fast as

the number of sets increases. We believe that, among others, future research should focus

on how this difficulty can be handled effectively.

As the number of variables in each set increases, the performance of LINGO

worsens faster than that of Algorithm MIMCKFE. This is because the latter takes

advantage of the fact that the optimal linear relaxation solution contains at most r

fractional-valued binary variables. On the other hand, as the number of sets increases, the

performance of Algorithm MIMCKFE worsens much faster than that of LINGO. This is

due to the benefit of using the lifting constraints in LINGO.

Given that the difficulty of the problem increases significantly when the exact

location of the interval of uncertainty is not known, the size of the problems tested for

MIMCKE was reduced by half. To get a better sense of the resulting difficulty and of the

effect that the equity constraints have on the optimal objective function value of the

problem, Table 7.3 is presented. The results in this table are based on only one instance

for each problem size because they are simply intended to give a qualitative flavor about

the problem. This table shows the time needed for LINGO to obtain the optimal solution

to MIMCKE and the optimal objective function value for the problem with and without

equity constraints. The problem instances were generated similarly as before and the

value of f was set equal to 0.01b. The last column of Table 7.3 shows the relative

percentage reduction in the objective function value resulting from the incorporation of
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the equity constraints. This reduction does not vary significantly for different instances of

the same problem size.

Table 7.3: Effect of equity constraints on the optimal objective function value

r Nk Bk Time (secs) Obj Obj no f % Red

10 50 50 3 10503.66 10573.24 0.6581

10 100 100 3 42882.54 42910.67 0.0656

10 150 150 12 91255.54 91295.22 0.0435

10 200 200 10 166969.1 167068.8 0.0597

20 50 50 875 21599.74 21634.6 0.1611

20 100 100 12 84194.68 84222.54 0.0331

20 150 150 461 187389.1 187459.7 0.0377

20 200 200 1143 325357.2 325497.0 0.0429

30 50 50 18 31674.5 31708.18 0.1062

30 100 100 10 125694.4 125723.0 0.0227

30 150 150 9 280930.0 280971.4 0.0147

30 200 200 16 497318.7 497318.7 0.0000

40 50 50 14 42973.61 42992.3 0.0435

40 100 100 7 168460.8 168460.8 0.0000

40 150 150 12 375254.2 375254.4 0.0001

40 200 200 21 658472.3 658472.3 0.0000

It is clear from the results of Table 7.3 that the performance of LINGO is really

poor for some instances. This becomes evident in the problems with (r,Nk,Bk) =

(20,50,50), (20,150,150) and (20,200,200) where LINGO needs 875, 461 and 1143

seconds, respectively, to terminate. When the equity constraints were dropped from these

problems, LINGO needed only 2, 4 and 5 seconds, respectively, to find the optimal
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solution. These cases, provide a clear indication of the great difficulty introduced by the

incorporation of the equity constraints.

The reduction in the objective function value due to the incorporation of the

equity constraints is relatively small for the problems shown in Table 7.3. As a relative

percentage, this reduction decreases as the number of sets increases, mainly because the

absolute value of the width of the interval of uncertainty becomes larger.

Tables 7.4 and 7.5 present the computational results for Problem MIMCKE. Due

to the fact that LINGO often exhibited an exponential behavior, a relative accuracy of

10-3 in Table 7.4 and 10-4 in Table 7.5 was used. The same relative accuracy was used for

Algorithm MIMCKE, to be able to directly compare the results obtained by the two

algorithms. Ten instances for each problem size were tested and f was set equal to 0.01b,

as before. The heuristic procedure was embedded in Algorithm MIMCKE, since in this

way the desired accuracy could be obtained much faster.

Table 7.4 presents the results for the case that the relative accuracy is set at 10-3.

The first column (MIM Avg) presents the average time that Algorithm MIMCKE needed

to find the optimal solution and the second (LIN Avg), the average time LINGO did. The

third column (# better) presents the number of instances out of 10 where the objective

function value of the solution provided by Algorithm MIMCKE was better than that

provided by LINGO. The fourth column (% MIM Improv) presents the average relative

percentage by which the solution provided by Algorithm MIMCKE was better than that

obtained by LINGO, for those instances that this occurred. Similarly, the fifth column (%

LIN Improv) presents the reverse average relative percentage for the cases where LINGO

was better.
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Table 7.4: Computational results for MIMCKE when

the relative accuracy is set at 10-3 (time in seconds)

r Nk Bk

MIM

Avg

LIN

Avg

#

better

% MIM

Improv

% LIN

Improv

10 50 50 0.05 3.0 0 0.028

10 100 100 0.01 1.0 9 0.042 0.005

10 150 150 0.02 1.0 10 0.036

10 200 200 0.03 2.4 10 0.021

20 50 50 0.01 1.2 8 0.021 0.019

20 100 100 0.03 2.0 9 0.042 0.014

20 150 150 0.05 3.8 10 0.033

20 200 200 0.06 4.8 8 0.010 0.001

30 50 50 0.02 1.8 5 0.036 0.005

30 100 100 0.05 3.4 6 0.019 0.005

30 150 150 0.08 6.4 10 0.013

30 200 200 0.10 8.8 10 0.008

40 50 50 0.02 2.0 6 0.047 0.006

40 100 100 0.06 4.4 7 0.019 0.003

40 150 150 0.10 14.8 10 0.011

40 200 200 0.13 14.8 10 0.008

The results of Table 7.4 clearly illustrate that Algorithm MIMCKE was able on

the average to obtain better solutions than LINGO, much faster. For most of these

instances, the algorithm obtained solutions with a higher objective function value than

LINGO in only a fraction of the time that LINGO required. This is mainly due to the

utilization of the heuristic procedure which was fast in providing good solutions within

the preset accuracy. This is exactly the reason why the average time for the algorithm

seems to increase polynomially with the size of the problem. It should be noted however
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that, for the problems with r = 10, Nk = 50 and Bk = 50, LINGO provided better solutions

for all instances tested. For fixed r, the difference between the solutions obtained by the

two algorithms seems to decrease as the values of Nk and Bk increase.

Table 7.5: Computational results for MIMCKE when

the relative accuracy is set at 10-4 (time in seconds)

r Nk Bk

MIM

Avg

LIN

Avg

#

better

% MIM

Improv

% LIN

Improv

#

failed

10 50 50 9.03 1.8 0 0.005 0

10 100 100 23.08 13.0 0 0.023 8

10 150 150 1.65 3.2 0 0.009 6

10 200 200 0.22 5.2 5 0.002 0.003 0

20 50 50 79.3 10

20 100 100 4.8 10

20 150 150 0.05 5.2 4 0.002 0.002 0

20 200 200 0.07 7.0 10 0.003 0

30 50 50 77.8 10

30 100 100 0.05 4.2 3 0.003 0.0011 2

30 150 150 0.08 6.6 0 0.001 0

30 200 200 0.10 10.0 5 0.003 0.004 0

40 50 50 0.09 3.6 2 0.001 0.002 4

40 100 100 0.06 4.2 7 0.005 0.002 0

40 150 150 0.10 8.8 8 0.004 0.001 0

40 200 200 0.13 15.6 10 0.004 0

Table 7.5 presents the same results when the accuracy was set at 10-4. A new last

column was added because the Algorithm MIMCKE did not solve some instances at this

new accuracy level. This column shows the number of instances for each problem size

for which the algorithm failed to return a solution within the limit of 50,000 nodes for the
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branch and bound tree. The average time for the algorithm was computed over the

instances for which the algorithm terminated.

It is clear from Table 7.5 that the number of instances where Algorithm MIMCKE

was able to come up with a better solution than LINGO decreases significantly compared

with the case where the accuracy was set at 10-3. Additionally, the performance of

Algorithm MIMCKE is really poor for some of the instances with a small number of

variables in each set. It should be noted that for several of these instances LINGO's

performance was also poor, although LINGO was always able to terminate with a

solution in reasonable time. The performance of Algorithm MIMCKE improves as the

number of sets increases mainly because the absolute value of the width of the interval of

uncertainty becomes larger and the heuristic procedure can be effectively utilized.

The high variability depicted in the results of Tables 7.4 and 7.5 is a clear

indication that even for the same problem size, the efficiency of the two algorithms

depends strongly on the specific instance of the problem. For this reason, there is no clear

pattern indicating how the average time needed to obtain the optimal solution changes as

the size of the problem changes. The difference between the solutions provided by the

two algorithms is now smaller, intuitively, since a smaller value for the relative accuracy

is used.

The results are analogous when an even stronger accuracy is required. The

superiority of LINGO becomes clearer and the number of cases where Algorithm

MIMCKE fails becomes even larger. It should be noted, however, that LINGO's

performance is also really poor for many problems. This is an implication of the

difficulty introduced by the equity constraints. The efficiency of Algorithm MIMCKE
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depends strongly on the efficiency of Algorithm MIMCKFE. The worst case performance

of Algorithm MIMCKFE which is exhibited rather often, makes the applicability of

Algorithm MIMCKE very limited.

For these reasons, the proposed algorithms can only be efficient when certain

problem sizes are solved or when reasonably good approximate solutions are sufficient.

On the other hand, when exact solutions are needed, LINGO should be preferred,

although its performance can be really poor in many cases, too.

A couple of important effects arising from the incorporation of the equity

constraints should be noted at this point. The first is that these constraints may result in

an optimal solution with a positive (unused) budget residual even though not all the

considered activities have been implemented. This happens when the utilization of this

unused budget results in a violation of the equity constraints that cannot be handled

successfully.

The second is that incorporation of the equity constraints may result in lower

profit decisions within a variable set. This happens when, by the structure of the problem,

an inferior solution within a set must be preferred in order for the problem to remain

feasible. This could mean for example that a budget amount may need to be “wasted” in a

set in order to bring the cost of this set within some desired limits. For these reasons, the

number of activities within each set should be as large as possible, because in this case

the effect from the incorporation of the equity constraints is minimized.
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“It is not enough to have a good mind; the main thing is to use it well.”    Rene Descartes

“The art of being wise is the art of knowing what to overlook.”                 William James

“Defeat never comes to any man until he admits it.”       Josephus Daniels

“The man who does not read good books has no advantage over the man who cannot read

them.”   Mark Twain

Chapter 8:

Future Research
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8.1 Introduction

This chapter contains a discussion on the possible ways in which the present

research can be extended in the future. In relevance to the transportation application, a

number of additional models are proposed that result after incorporating different

elements in the models addressed in this dissertation. In this way, new mixed integer

formulations arise that haven’t been studied in the past. These models exhibit broad

theoretical and practical interest as natural extensions of the models addressed in this

dissertation.

Another direction in which future research can be directed is the improvement of

the algorithms developed in this dissertation, or the development of more efficient

algorithms for the models treated in this work. Since these models are introduced for the

first time here, there is probably much that can be done to this direction.

Another way the present research can be extended is by incorporating elements

from the models that were addressed in this dissertation to other models used in different

applications. For example, the important issue of equity can be incorporated into a large

number of different resource allocation problems in which the considered activities can

be grouped into disjoint sets. The problem of keeping some balance on the resource

amounts consumed from different groups of activities is a problem often encountered by

decision makers. The specific formulation may be different than the ones in this

dissertation but the present work can be very helpful for modeling and solving the

specific problem.

Finally, the adaptation of the developed algorithms to handle different problems

seems also very promising. This becomes evident when we consider that the main
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structure of the models addressed in this dissertation can also arise in many different

applications. Many of the techniques that were used to treat these models are quite

general and can be used to improve the performance of algorithms dealing with different

problems.

8.2 Transportation Extensions

The transportation model of Section 1.3 can be used as a basis for the

development of more complex models that incorporate additional aspects of the problem.

For example, mutually exclusive alternatives may exist for each of the discrete highway

points where some intervention is considered. In that case, multiple choice constraints for

the binary variables should also be added to the model.

Nonlinear functions can be used to model the anticipated profit and cost of the

continuous improvements when the proportionality assumption is not realistic. The effect

of traffic growth resulting from the implemented projects can also be taken into account.

It is also very interesting to study the relationship between the accident reduction factors

of single and combined improvements.

In the present model, setup costs for continuous improvements were ignored. In

future research setup costs can be considered, if not negligible. When the input data are

subject to estimation errors, a stochastic variation of the model is more suitable. Finally,

to accommodate a multi-year highway safety improvement program as well as

incorporate changes of traffic over time, the current model can be extended to a dynamic

multi-period model.
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8.3 Extensions for MIMCK

Although Algorithm MIMCK is very efficient, it could be potentially improved

further in the future. The question of whether the problem can be solved without ordering

the variables in each multiple choice set remains open. To this direction, some theory

from the work dealing with the so-called core of a knapsack problem (see Pisinger, 1999)

could turn out to be very useful.

Another way in which the algorithm could be improved is by deriving tighter

upper bounds for the solution of each of the B&B search tree subproblems than the one

provided by the LP relaxation solution. Work that has been published on this subject for

the 0-1 knapsack problem (e.g. Martello et al., 1999) can provide the fundamentals

needed to proceed to that direction.

8.4 Extensions for LMCKE

The question of how the present algorithm for LMCKE can be further improved

needs to be investigated. It is possible that such improvements can be made to both

phases of the algorithm. The variability of Phase II on problems with dominated variables

is also a subject that needs further research and potential improvement. Another question

that remains open for future research is whether a lower bound on the optimal cost of

each set can be derived, and if not, under which conditions the unused budget at the

optimal solution of the problem is equal to 0. This is important because then the lower

bound of Corollary 7.2 can be utilized in the algorithm.

Besides the algorithm developed in this dissertation, another algorithm can also be

developed for LMCKE. This new algorithm works by maintaining primal feasibility and
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trying to reach optimality. To do this, after the construction of the multiple choice lists,

the equity constraints should not be dropped. Instead, the variables should be increased in

such a way as to retain feasibility. To this effect, the variables should always be increased

in a way that the maximum resource difference between any two sets does not exceed the

maximum allowable value, f. Thus, it may be necessary for some iterations of the

algorithm to increase simultaneously more than one variable from different sets. The

algorithm terminates when either the total available budget is used (scarce budget) or

when no other variable exists that can be increased (surplus budget). The solution at that

point is optimal.

As already mentioned, the two algorithms can be thought of as dual to each other.

The algorithm presented in this dissertation, finds first a superoptimal solution violating

the equity constraints and works toward (equity) feasibility while maintaining

superoptimality. The suggested algorithm, tries to reach optimality while always

remaining (equity) feasible. It would be very interesting to develop and code the second

algorithm and then compare its performance against the performance of the existing

algorithm. Useful insight could be provided this way and many interesting questions

could be answered. One such question that could be posed, for example, is what are the

characteristics of the problems for which the one or the other algorithm performs better.

8.5 Extensions for MIMCKFE

The difficulty of this problem necessitates the development of a more efficient

algorithm that can handle many more instances of the problem successfully. The main

problem with the current algorithm is that, in the worst case, an exponentially large



Chapter 8:                                                                                                                                 Future Research

181

number of tree nodes are generated. Thus, the time needed to reoptimize these

subproblems occasionally becomes prohibitive even though the solution to each of these

subproblems is obtained very fast using the specialized LP algorithm. Therefore, future

research should focus on how to make the size of this B&B tree smaller. The

incorporation of cutting plane techniques into the present algorithm seems very

promising to this direction, especially if this could take advantage of the special structure

of the problem.

Another direction in which future research should be directed is the derivation of

tighter upper bounds for the optimal solution of each of the tree subproblems which

would also make the size of the B&B tree smaller. Additionally, more strategies can be

tried for selection of the next tree subproblem to be explored and of the next binary

variable to branch on.

Another topic for future exploration is the improvement of the heuristic that was

designed for the problem. Future research could be directed to two main directions. The

first is the modification of the heuristic in order to reduce the number of problems for

which it terminates without finding a feasible solution. Mainly, the procedure should

repeat its search in a more sophisticated way by making additional passes and trying

different combinations until a feasible solution is obtained. Secondly, it is worth

researching whether the solutions provided by the heuristic can be further improved using

a more clever algorithmic procedure. Of course these improvements for the heuristic

translate to an extra cost in coding effort and computational efficiency.
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“It is better to deserve honors and not have them than to have them and not deserve

them.”               Mark Twain

“... seek and ye shall find.”           The Book of Matthew

“Necessity is the mother of invention.”   Anon

“Education is what survives when what has been learned has been forgotten.”

B. F. Skinner

Chapter 9:

Summary
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9.1 Introduction

In this chapter the work presented in this dissertation is briefly summarized. The

particular implementation conclusions obtained, were summarized at the end of each of

the corresponding chapters.

In this dissertation a resource allocation model was introduced with application in

transportation management for allocating funds to highway improvements. The model

contains both discrete and continuous activities that can be partitioned into disjoint sets.

This makes possible the modeling of both the improvements that can be implemented

continuously over a section of a highway and of the traditional ones that refer to a

specific intervention at a certain point of a highway. Continuous and binary variables

were used to represent these two improvement types, respectively, and the problem was

formulated as a 0-1 mixed integer knapsack model. Linear multiple choice constraints

were added that handle the interactions that arise between the continuous activities of

each set. Equity constraints were also included that ensure a certain balance on the

resource amounts allocated to different activity sets. Various subproblems that arise

based on this general model were studied and a number of important properties was

developed for each of them. Based on this theory, various algorithmic procedures were

developed that can be used to obtain the optimal solution of each of these problems.

These algorithms were then tested against existing algorithms that can be used

alternatively.
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9.2 Dissertation Summary

The first problem addressed was the 0-1 mixed integer knapsack problem with

linear multiple choice constraints. This is a generalization of two widely known

problems, the linear multiple choice knapsack and the binary knapsack problems. Several

model properties were developed which were utilized to design a B&B solution

algorithm. The algorithm solves at each node of the B&B tree a LP relaxation, using an

adaptation of an existing algorithm for the linear multiple choice knapsack problem. The

special relationship between the solutions of parent and children subproblems is exploited

by the algorithm. This results in high efficiency and low storage space requirements.

Computational results demonstrated the efficiency of the algorithm. Analysis of these

results provided valuable insights into the properties of the problem.

Then, a new variation of the linear multiple choice knapsack problem was

introduced. The problem arises when equity constraints are incorporated into the

traditional linear multiple choice knapsack problem. A mathematical formulation was

presented and it was proven that this problem structure exhibits several fundamental

properties. These were used to develop an optimal two-phased greedy algorithm for its

solution. In the first phase, the algorithm enhances an existing method for the linear

multiple choice knapsack problem to obtain an initial superoptimal solution. Phase two

starts with this solution and, at each iteration, it brings closer together the multiple choice

sets that significantly differ in the resource amounts that they consume. This is done in

such a way that superoptimality is maintained throughout.

The computational complexity of the algorithm was examined. The computational

results presented also illustrated the efficiency of the algorithm. It outperformed a
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commercial linear programming package and its superiority increased with problem size.

The algorithm performs well because it exploits the special structure of the problem. It

focuses on the multiple choice sets rather than on individual decision variables.

Finally, two versions of the general model of Section 1.3 in which all the

individual elements are included were studied. In this model, an available budget must be

allocated to disjoint sets of discrete and continuous activities, while also keeping some

balance with respect to the budget amounts allocated to different sets. Several properties

for each of the two versions of the model were developed. This methodology was then

used to design a branch and bound algorithm for the first version of the model. The

procedure solves a linear relaxation at each node of the branch and bound tree using a

specialized highly efficient algorithm. Computational experience indicates that the

performance of the algorithm depends strongly on the structure of the size of the

problem. Although it can be efficient in many cases, it often exhibits exponential

behavior which limits its applicability.

For this reason, an optimization-based heuristic was developed based on this

algorithm that has a very good performance for many problem sizes. The algorithm was

cleverly embedded within a binary search procedure in order to handle the second version

of the model. Although the resulting algorithm does not have a superior performance

when compared to a commercial software package for mixed integer programming, it can

be used in conjunction with the heuristic procedure to obtain good approximate solutions

very fast.

The behavior of the model under consideration was  explored in depth with the

analysis of many computational results obtained using the two algorithms and a
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commercial package for mixed integer programming. From the analysis of these results,

the main characteristics of the model were identified and its interesting behavior was

explored.

We believe that the insights gained into the structure of the problems studied in

this dissertation and the advantages of the algorithms developed will prove useful in real

world applications that involve a large number of decision variables. The general model

arose from an application in transportation management for allocating funds to highway

improvements. This is only one of a more general class of problems involving balancing

the resource amounts consumed by different groups of activities which can be addressed

by using the present work.
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“A scientific truth does not triumph by convincing its opponents and making them see the

light, but rather because its opponents eventually die and a new generation grows up that

is familiar with it ”                               Maxwell Planck

“The greater the difficulty, the more the glory in surmounting it ”                       Epicurus

“An expert is someone who knows more and more about less and less, until eventually he

knows everything about nothing.”   Anon

“Success generally depends upon knowing how long it takes to succeed.”    Montesquieu

“A lot of fellows nowadays have a B.A., M.D., or Ph.D. Unfortunately, they don't have a

J.O.B.”   Fats Domino

“Each problem that I solved became a rule, which served afterwards to solve other

problems.”          Rene Descartes

“A journey of a thousand miles begins with a single step.”       Confucius

“The roots of true achievement lie in the will to become the best that you can become.”

           Harold Taylor

“To accomplish great things, we must not only act, but also dream; not only plan, but also

believe.”          Anatole France

“The problems that exist in the world today cannot be solved by the level of thinking that

created them.”          Albert Einstein

“If a man’s wit be wandering, let him study the mathematics.”

 Francis Bacon, Essays 1625
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APPENDIX I

A comprehensive alphabetical list of all the abbreviations used in this Dissertation:

B&B: Branch and Bound

LMCK: Linear Multiple Choice Knapsack

LMCKE: Linear Multiple Choice Knapsack with Equity Constraints

LP: Linear Programming

MC: Multiple Choice

MIMCK: Mixed Integer Knapsack with Linear Multiple Choice Constraints

MIMCKE: Mixed Integer Knapsack with Linear Multiple Choice and Equity

                    Constraints

MIMCKFE: Mixed Integer Knapsack with Linear Multiple Choice and Fixed

                      Equity Constraints
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APPENDIX II

A list of the files containing the source code for all the algorithms developed in this

Dissertation:

A) For Problem MIMCK:

- MIMCKP.c  (main program)

- MIMCKPImplementation.c (function definitions)

- MIMCKPTypes.h (data structure definitions)

B) For Problem LMCKE:

- LmcEquity.c  (main program)

- LmcEquityImplementation.c (function definitions)

- LmcEquityTypes.h (data structure definitions)

C) For Problem MIMCKFE:

- MIMCKEFixed.cpp  (main program)

- MIMCKEFixedImplementation.cpp (function definitions)

- MIMCKEFixedTypes.h (data structure definitions)

D) For Problem MIMCKE:

- MIMCKE.cpp  (main program)

- MIMCKEImplementation.cpp (function definitions)

- MIMCKETypes.h (data structure definitions)
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