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Hepiinyn

H moapovoa datpir] mpaypatedeton SUVAPIKEG TOATIKES TPOUNDELTMOV TOV OTOIMV N
Oon e€aptdror amod v wototnTa eSvanpétnong mov wapéyovy. H dtatpipn dwapbpavetat og
tpeic evomtec. H Evomta 1 diepeguvd BédTioteg dvvopikeés moMTIkEG omoBEnaTog dtav n
oLYVOTNTO EMOKEYEDV TOV ayopactdv kabopiletar amd mponyovueves e&ummpetioelg. H
Evomta 2 e£etdlel Tov avtoyovioud Kot T cuvepyosio TpoUnfentdy yio TNV apocimon TV
ayopaotaVv Pdacet g eEvmnpétnong mov toug mapéyovv. H Evomta 3 e€etdler ™ dvvopikn
TOPOYYEA000G10 KOl €MIAOYY] ayopact®v Otav 1 eévmnpétnon emnpedlel ™ HEAAOVTIKT
{non. AkolovBolv o1 TEPIAMWYELS TOV TPLOV EVOTNTOV.

Evétyta 1.'Evog ayopactig mov ektifetan og ALY 0moBEH0TOC PIopel va YAGEL TV
EUTIOTOGVVI TOL Kol va, eivan Atyotepo dratebeluévog va emAécet tov 1010 Tpounbevty otnv
enduevn mpoun0eld Tov. Avtiotpoga, po 0eTikn ayopaotiky epmepio pe dStabécipo andbepa
UTOpEl VO AOKOTAGTHGEL TNV TPOOTTIKY TOL TpounBeuth va emiheyel 6to péAlov. Iown mpémet
va gival n ToMTikn EAEYYoV amoBepdTmv Tov Tpounbevty oe avtv TV mepintmon; [a va
OVTILETOTICOVHE AVTO TO EPATNUM, AVATTUGCOVUE £VOL LOVTEAO TOALATADV TEPLOOWV EVOG
ayopaoT] TOL EMALYEL Evav Tpoundevt| pe mbovotnta mov eoptdtal amd TV aStoAdynon
tov TpounBevty|. H a&loddynon vty aviikatontpilel TV EUTIGTOCHVN TOV 0LYOPOUGTH TPOG TOV
wpounBevtn Pdost g mponyovuevng eELINPETNONG OV UETPLETAL LE OPOVG TEPIOTUTIKMDV
dafecodTTOC/EAAEIYNG ATOOEUOTOG KOl EVIUEPDOVETOL OO TOV OyOPOoTH UETA Omd KAOE
ebummpémon. H Pértiot moAtikn omoBépatog tov mpounbevtn owoywpiler tov xdpo

amoBéaTog oe dlaoTHHATO TopayyeEAag Kot pn mopayyeliog yio kébe eninedo a&roAdynone. H



BérTiom amdpaon eEaptdral amd 1o e4v 1 Topayyelio peudvel Tov kivduvo vroBdouiong tov
npounfevty| apketd ®ote va aviiotabuiost v adéNon Tov KOGTOLG TapOyYEAiNG Kot
anoféparog. Bpiokovpe kot aglohoyovpe ta Opro TG PEATIOTNG TOMTIKTG Kot TOPOVGLALOVLE
OpopéEVES amd TIC 1010TNTEG TG Alvovue mpobimobécelg yoo T PEATIOTOTNTA TOAITIK®V
amofépotog Paong (basestock) kor deiyvovpe 0Tl TéToleg MOMTIKEG givar Péltioteg €dv
VIapyovv povo dHo agloroynoelg (Ko kot kakn) 1 €év 1 {ntnon tov ayopaotn givatl otabepn).
XPNOWOTOUDVTOG TO HOVIEAO HOG, LTOAOYILovpe TO KOGTOG amobeldTOV 0T0 TAAICIO EVOG
mpoTuToL gpnueptdondAn (newsvendor). To apiBuntikd mepdpata vrodeikvoovy ot (i) 0
npounBevtig pmopel va emm@eAndel amd T datnpnon vynAotTepmV anobepudtomv étav £xet
pétpieg alohoynoelg mapd akpoieg aSloAOYNGELS Kot amrd TN GUVOAANYT LE EVOV 0yOPOGTY TOV
OVTOTOKPIVETOL AyOTEPO akavovioto otnv sEvmnpétnon, (i) or moMrtikég basestock eivat
OmOTEAECUOTIKEG Kot (111) YpNOUOTOI®VTOS £vo avBaipeto K66TOG EAAEIYNG amOBELNTOS GTO
TAO{G10 TOV TPOTHTTOV TOL EPNUEPIOOTOAN UTopel v PAAWEL OTLLOVTIKA TOL KEPOT.

Evotntae 2. H cvunepipopd pog etatpeiog mod aAralel ebkoro mpopunbevtéc (always-
a-share) pe yvopova v eEuanpétnon UTopei vo, EXEL ONUAVTIKY EXTIBPOCT) OTIC AVTOYMVIGTIKEG
KOl CUVEPYOTIKEG TOMTIKEG amofepdtwv Tov mpoundevtov . [a va diepgvvijcovpe ovtn
v enidpaon, eEetdlovpe £va HOVTELO £VOG ETOVOLAUPAVOLEVOD ayOpaoTH TOV HOopdlel TNV
TPOTIUNGN TOL UeTAED dVO ETEPOYEVAOV TPOUNBELTMOV TOHTOV EPNUEPIOOTMOAT] GE EVaV ATEPO
opifovta. ['a va methyel 1o puéytoto mAeovEKTA EVTINPETNONG, O ayopaoThg emPBpafedel T
dwbeoudTTo TOV TPOIOVTOC HE EmOvVOyopd (EUMIGTOCLVY)) KOl TIHOPEl TV EAAEWN
amofépartog pe aliayn (dvomiotia) v emodpevn mepiodo. o v avTipeT®TIoN ALTAG NG
CLUTEPLPOPAS, M PEATIOT TOMTIKY Topayyel®dv kdbe mpounbevtn eivor pio wOALTIKY
basestock pe pun apvntikd «evepyo» eminedo basestock otav o mpounfevtng €xsr v
EUTIGTOCVVI] TOV OyOpOoTr Kot Undevikd otav oev v &xel. Katw amd avtayoviepd, to
Béltioto evepyo emimedo basestock kabe mpounbevt eivon peyoddtepo amd T0 HLOTIKO TOV
eninedo basestock kat givar av&ov mg mpog to evepyo eminedo basestock tov dGAlov Tpoundevt.
Kdato amd po eldyioto meploplotikny cvvOnkm, ta evepya eminedo basestock kot tov 600
mpounbevtdv £yovv TOLAdYIGTOV piot AVon 1ooppomiog Nash kabBapng otpatnywmg (pure
strategy). Eav ot mpounbevtéc cvvepydlovral, 1o Péltioto evepyd emimedo basestock tov
npounBevty| Le TO VYNAGTEPO/YOUUNAOTEPO LLOTIKO KEPSOG tvar LeyoAOTEPO/KPOTEPO OO
TO OVTIGTOLYO EMITEDO TOV LLOTIKOV emimédov basestock. ' va kKotavorcovpe KoADTEPQ 0VTA

TO, ATOTEAEGLLATA, TO EQAPUOLOVUE GTNV TEPIMTTOON 7OV 1) {TNOMN TOL AyopaoT| £xEl ekOeTIKN
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Katovopun. Avtd pog emrpénetl vo Adfovpe akpiPeic exkppacelg yia o BEATIOTO evepYQ emineda
basestock kot tig cvvapTROEL KEPSOPOPING, TIC OTOIEC OTN GUVEKELN XPTGLULOTOIOVUE GE [
apOunTIKn avaivon evoctnoiog. OALOKANPOVOLLE TNV EVOTNTO VTN HE Uio GLEATNON Y10 TNV
EMEKTOON TOV OMOTEAEGUATOV GE TEPIGGOTEPOLS OO dVO TPOUNOEVTEG,.

Evotnta 3. Ot tpoundevtég mov katackevdlovv mpoidvta yo amodnikevon (make-to-
stock) kot €yovv TOKTIKOOG oyopaotés mpémel va  €EIGOPPOTHGOVY TO KOGTOG TMV
VIEPATODEUATMOV EVOVTL TOV KOGTOVS TOL TPOKVATEL OO TIC AVTIOPACELS TOV AYOPOUSTAOV OTOV
To TPOTOVTO OEV lvan dtabéoipa. e mepintmon eEAAElYE®Y, 1| ETILOYT TOV 0YOPUCSTOV TOL Hat
e&umnpeBovv Kot cuvenmg Ba tkovoroinBovv mpénet va avtiotadpilel ta Tpéyovia £600a ard
TOVG IKOVOTIONUEVOLG OYOPACTEG EVOVTL TOV OTOAEL®V TNG HEALOVTIKNG (NTNoNG amd Tovg
SVoOPESTNUEVOLS ayopaoTES. [o vo mapdoyovpe Katovonorn Kot VTooTtypiEn ano@dcemy
OGYETIKA YO TO TOPATAV® TPOPANUa, (1) ovamtOGOOVUE €V KOVOTOUO HOVIEAO TOTOV
EPNUEPOOTOAN Li0G eTOPEiNG e €TEPOYEVELG ayopaoTég pe (Rnon mov e€aptdrtal and v
eEummpémon, (i1) mapéyovpe WOTNTES TOV PEATIOTOV OATOPACEDV TOPOUYYEAIOG KOl ETAOYNG
ayopaot®v kot (iil) avorTdGGoVUE Hio KOvOTOU TOATIKY TOTTOL dgiktn (index policy) yio v
emloyn ayopaoctdv mov Paciletar otn Aaykpovlov Xaridpwon (Lagrangian Relaxation
(LR)) kot ) ovykpivovpe pe 000 ahreg moltikéc deiktdv LR. To poviélo apopd o etonpeio
OV TOPOYYEAVEL TPOIOVIOL YloL L0 OUHAO0 ETMAVEPXOUEVAOV OYOPOUSTAOV TOV  OQNVOLV
OLOPOPETIKA £6000. KOl ETICKETTOVTIOL TNV ETOUPEIR HUE SLOPOPETIKOVG HEGOVS PLOLOVS TOV
eCaptovtol amd 1o av €ivol KOVOTOMUEVOL 1| OLGOPECTNUEVOL HE TNV TEAELTOIO TOVLG
ebummpémon. H emyeipnon emdéyer molovg ayopootég Oa evmmpetnoet edv 1 {tnon
vrepPaivel v mocdTTa TapayyeAiag (tpéyovca duvvoukdtra). o 0o ayopootéc,
delyvoupe Ot o mohtiky Xtabepnig [Toodtrag [Mapayyeriog (Fixed Order Quantity (FOQ))
KOl U100 TOAITIKY] EMAOYNG OyopaoTtdVv TOTOL ogiktn eivan PéAtiotes. Mo mepiocoOTEPOLC
ayopooTes, N PEATIOT ToMTIKN TEpAauPdvel vrepmapayyeModocio (voTapayyEA0docio)
OTOV 1] GLVOMKT] IKAVOTOINGT TOV AYOPaGTH Elvat VYNAY (YOUNAT) Kot ETIAOYY| 0yOPUGTAOV TOV
LEYLOTOTOOVV Ta TPEYOVTO £€6000. (LeAlovTik) (RTnom) OTav 1 GLUVOAIKY| IKOVOTOINoT| TV
ayopaotav peTd ™ (non sivar vynAn (xounAn). o va avipetonicovpe 10 TpoPinua,
ONUovpyov e TPEIS TOAMTIKEG dekT®V LR: o moAttikn deitn Lagrange mov ypnoiponotel pa
OpOLOHOpeN TN duvapkdTTag, tia Ttoittikn deiktn Whittle mov ypnoyomotei po dtokprrikn
T QUVOIKOTNTOG KOl Elval LUMTIKE BEATIOTN KoL 10 KOVOTOUO TOMTIKY] OEIKTN «EVEPYOD

TEPLOPICUOV» TOV  YPNOUOTOLEL  SLOKPITIKY T OLVOIKOTNTOG OTOV O TEPLOPICHOG
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duvapukottog eivat evepyogs. Ta apBuntikd arotehéspota deiyvouv 6Tt 1 TEAEVTOIO TOALTIKY
etvar oxeddv PéATIoT Ko veployvel Twv GAA®V 600 Kol OTL 0 GLVOVAGUOC TNG e TN

KataAAnAn moltikr) FOQ, umopel va givor moAd amotehecpatikog.
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Abstract

This thesis deals with dynamic supplier policies under service-dependent demand.
The thesis is structured in three parts. Part 1 explores optimal dynamic inventory
policies when buyer purchase incidence is driven by past service, Part 2 looks at
supplier competition and cooperation for buyer loyalty on service, and Part 3 tackles
dynamic ordering and buyer selection when service affects future demand. A summary

of each part follows.

Part 1. A buyer exposed to a stockout may lose goodwill and be less inclined to
select the same supplier in his next procurement. Reversely, an in-stock experience
may restore the supplier’s prospect of being selected in the future. What should the
supplier’s inventory control policy be in this situation? To address this question, we
develop a multiperiod model of a buyer who selects a supplier with a probability that
depends on the supplier’s rating. This rating reflects the buyer’s goodwill towards the
supplier based on past service, measured in terms of in-stock/out-of-stock incidents,
and is updated by the buyer after each service. The supplier’s optimal inventory
policy partitions the inventory space in order-up-to and do-not-order intervals for
each rating. The optimal decision depends on whether ordering reduces the supplier’s
risk of being downgraded enough to offset the increase in her ordering and inventory
costs. We derive and evaluate bounds on the optimal policy and expose some of its
properties. We obtain conditions for the optimality of basestock policies and show
that such policies are optimal if there are only two ratings or if the buyer’s demand
is constant. Using our model, we impute the stockout cost in a newsvendor setting.
Numerical experiments suggest that (i) the supplier may benefit from holding more

inventory in intermediate than in extreme ratings, and from dealing with a buyer who

XV



responds less erratically to service, (ii) basestock policies are efficient, and (iii) using

an arbitrary stockout cost in the newsvendor setting can significantly hurt profits.

Part 2. A firm’s service-driven always-a-share behavior may have a significant ef-
fect on the competitive and cooperative inventory policies of its suppliers. To explore
this effect, we consider a model of a repeat buyer (she) sharing her patronage among
two heterogeneous newsvendor-type suppliers over an infinite horizon. To enjoy the
best service advantage, the buyer plays one supplier (him) against the other by re-
warding product availability with repurchase (loyalty) and punishing stockouts with
switching (disloyalty) in the next period. Faced with this behavior, the optimal order-
ing policy of each supplier is a basestock policy with a non-negative “active” basestock
level when the supplier has the buyer’s loyalty and a zero basestock level when he does
not. Under competition, the optimal active basestock level of each supplier is greater
than his myopic basestock level and increases in the other supplier’s active basestock
level. Under a mild condition, the active basestock levels of both suppliers have at
least one pure-strategy Nash equilibrium solution. If the suppliers cooperate, the
optimal active basestock level of the supplier with the highest /lowest myopic profit is
greater /smaller than his myopic basestock level. To better comprehend these results,
we apply them to the case where the buyer’s demand is exponentially distributed.
This allows us to obtain exact expressions for the optimal active basestock levels and
payoff functions, which we then use in a numerical sensitivity analysis. We conclude

with a discussion of the extension of the results to more than two suppliers.

Part 3. Make-to-stock suppliers with regular buyers must balance the cost of
overstocking against the cost arising from the buyers’ reactions when items are un-
available. In selecting which buyers to satisfy when shortages occur, they must weigh
the current revenue from the satisfied buyers against the loss in future demand from
the dissatisfied buyers. To provide insight and decision support on these trade-offs,
(i) we develop a novel newsvendor model of a firm with heterogeneous buyers with
service-dependent demand, (ii) we provide properties of the optimal ordering and
buyer selection decisions of the firm, and (iii) we derive a novel Lagrangian Relax-
ation (LR)-based index policy for selecting buyers and compare it with two other

LR-based index policies. The model concerns a firm that orders items for a group

Xvi



of repeat buyers who generate different revenues and visit the firm with different av-
erage rates that depend on whether they are satisfied or dissatisfied with their last
visit. The firm selects which buyers to serve if the demand exceeds the order quantity
(current capacity). For two buyers, we show that a fixed order quantity (FOQ) policy
and an index buyer selection policy are optimal. For more buyers, the optimal pol-
icy involves overstocking (understocking) when the overall buyer satisfaction is high
(low) and selecting buyers that maximize the current revenue (future demand) when
the overall buyer satisfaction after the demand is high (low). To tackle the prob-
lem, we derive three LR-based index policies: a Lagrangian index policy that uses
a uniform capacity price, a Whittle index policy that uses a discriminatory capacity
price and is myopically optimal, and a novel active-constraint index policy that uses
a discriminatory capacity price when the capacity constraint is active. Numerical
results indicate that the latter policy is near-optimal and outperforms the other two

and that combining it with the right FOQ policy can be very efficient.
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Chapter 1
Introduction

In this chapter, we introduce the topic of this thesis. In Section 1.1, we present
the background and motivation behind this work, in Section 1.2, we pose the main
questions that we address, in Section 1.3, we review the related literature, and in

Section 1.4, we summarize the main contributions of the thesis.

1.1 Background and motivation

Buyer reactions to service. Manufacturers and suppliers of industrial market
goods must balance the cost of overstocking against the cost arising from the buyers’
reactions when not enough products are available on demand. These reactions can
vary significantly depending on the extent of the inconvenience that stockouts cause,
which ranges from increased administrative costs to production disruptions to lost
sales damages. In the worst-case scenario, stockouts can cause an extraordinary
upheaval in entire industrial sectors, even the global economy, with factories around
the world limiting or even halting their operations, despite powerful demand for
their wares. This has been the case with the recent shortages of goods, such as
computer chips, construction materials, and many others, reflecting the disruption
of the COVID-19 pandemic and other catastrophic events, combined with decades
of companies limiting their inventories in the pursuit of Just-in-Time (Goodman and
Chokshi, 2021).
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Although the adverse impact of retailer stockouts on consumer behavior has been
researched extensively for over fifty years, the literature on buyer reactions to stock-
outs in B2B markets is scarce. According to an earlier survey, most buyers return
to their original suppliers after experiencing a stockout, but firms need to assess the
losses of those buyers who remain with an alternate source of supply that was pursued
because of a stockout (Dion and Banting, 1995). Another study reports empirical evi-
dence based on corporate financial data that firms are more inclined to avoid stockouts
with more inventory when profit margins are higher and that the likelihood of losing
the demand of disenfranchised buyers depends on the alternative sources of supply
that are available (Blazenko and Vandezande, 2003).

Multiple sourcing. Many firms use multiple sourcing to hedge against opera-
tional and disruption risks and stimulate competition among their suppliers (Minner,
2003; Tang, 2006; Svoboda, Minner and Yao, 2021). The trend toward multiple or
dual sourcing has been intensified in the aftermath of the COVID-19 pandemic and
other disasters (Alicke, Barriball, Foster, Mauhourat and Trautwein, 2022). Having
established multiple supply channels, they can easily switch their patronage from one
supplier to another, especially for products for which supplier switching costs are low.
Though having multiple suppliers for the same products can add complexity and cost
to a buyer, many of the risks of multiple sourcing can be mitigated by making sure

that the buyer is collaborating with high-quality suppliers.

To use multiple sourcing, buyers develop procurement strategies based on which
they select their supply partners. Using scorecard-based assessment methods, which
are readily available in most ERP systems (e.g., SAP (2022b); Oracle (2021)), they
evaluate potential suppliers against strategic criteria related to cost, quality, service,
social responsibility, risk, agility, etc., to create a shortlist of certified suppliers that
best meet the criteria. While cost optimization is still a critically important criterion
for supplier selection, in many cases, it is no longer at the top of the list (Tang,
2006). Companies are looking for partnerships that meet high standards in several
areas, with product quality and on-time delivery being among the leading criteria
(Bosch, 2020; Intel, 2020; Samsung, 2020).

Product availability in particular has emerged as a decisive selection factor in the
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wake of major catastrophic events that have exposed the vulnerability of companies
that rely heavily on one or a limited number of trading partners. Indicatively, during
the COVID-19 pandemic, nearly one-fifth of Wendy’s restaurants in the US run out of
beef due to severe meat shortages caused by COVID-19 outbreaks in meat processing
plants (Valinsky, 2020).

Often, the shortlist of suppliers is limited to two suppliers, because the additional
effort required to track the performance and manage the relationship with more sup-
pliers can become counterproductive. Also, as the number of suppliers increases, the
relationship developed with each supplier weakens, and the suppliers tend to pay
more attention to their other business partners, including the buyer’s competitors.
The predominance of dual sourcing over multiple sourcing is reflected in the inventory
control literature, where 70% of the publications consider dual sourcing and only 30%

look at multiple sourcing (Svoboda et al., 2021).

Supplier selection. Once a supplier base has been created at the strategic level,
the buyer must decide how to divide the demand among the suppliers at the opera-
tional level. Depending on the market context, the buyer may allocate the demand
to all the suppliers, select one supplier to fill it, or even announce the demand to all
the suppliers and award it to the first supplier who fills it (Armony and Plambeck,
2005). If the demand allocated to a supplier is not fully met, the missing items may
be substituted with compatible items from the same supplier, backordered, procured

via transshipment from another supplier, or canceled.

In some situations, the supplier uses flexible long-term supply contracts that im-
pose some restriction on the buyer, usually in the form of a commitment to purchase
certain minimum quantities (Tang and Tomlin, 2008). The most flexible commitment
is to specify a total minimum quantity where the buyer is allowed to place any order
in any period, as long as the cumulative orders across all periods exceed this quantity
(Bassok and Anupindi, 1997). This type of flexibility allows the buyer to occasionally
call on all suppliers and reassess their service. At the same time, it guarantees a
minimum level of trade for the suppliers, helping them to stay in business—therefore,

also keeping the buyer’s supply channels open—and giving them the opportunity
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to compete for a larger share of the demand by improving their service level. Ex-
amples of companies that preferentially allocate all their business to suppliers that
performed well in the past but hesitate to withdraw business from suppliers who
performed poorly are presented in Andrews and Barron (2016) in the context of a

dynamic favored supplier allocation rule.

In other situations, the buyer can leverage the demand allocation decision to foster
competition between the suppliers. This can be done by allocating the demand to the
suppliers based on either promised or past performance. The first approach has been
studied extensively in the following context. The buyer sets up a rule for allocating
the demand, and the suppliers compete for a share or all of the demand by offering
their price, capacity, service level, lead time, or some other performance measure,
depending on the rule. The allocation of demand based on past performance has been
less researched. Most of the literature in this area concerns firms that compete for
market share on service in a B2C environment. The market share of each firm evolves
smoothly over time as customers flow in and out of its customer pool depending on

the service they receive from the firm and its competitors.

To monitor suppliers and stimulate competition between them, many companies
use formal quantitative rating schemes (Li, Zhang and Fine, 2013). Such schemes are
commonplace in many ERP systems. For example, the Supplier Rating System of
Oracle’s PeopleSoft enables companies to group and weigh the KPIs of suppliers into
categories that are further weighted and grouped into an overall composite supplier
score. This score is then compared to a rating scale and assigned a rating, much like
a report card in school. For instance, a score 0-100 can be transformed to a rating
A-F using the following rating rule: A > 90, B > 80, C > 70, D > 60, F < 59. The
supplier scorecard is constantly updated and accessible across the company and to
the supplier (Oracle, 2020).

While a supplier with a high rating clearly has an advantage over a competitor
with a lower rating, it is not obvious that the former supplier will always be selected
over the latter supplier, because the selection process can be highly uncertain due to
the buyers’ perceived difficulty in predicting supplier performance (Riedl, Kaufmann,
Zimmermann and Perols, 2013). Tang and Tomlin (2008) attribute this difficulty
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to the low visibility and control level of supply chain partners which reduces the
confidence of each partner in the information provided by the other partners. Despite
the seamless access to information enabled by technological advances, suppliers may
disguise the on-hand inventory or lead time that they quote to their buyers, and buyers
may inflate the demand forecasts that they provide to their suppliers (Christopher
and Lee, 2004). The uncertainty in supplier selection may be further amplified due
to the multiple decision makers it involves, e.g., it may be the outcome of an opinion
poll by the buyer’s purchasing managers (Benjaafar, Elahi and Donohue, 2007). As
a result of this uncertainty, the buyer’s request incidents may appear as random to

the supplier.

The issue of supplier selection has been extensively studied in the literature, mostly
from the buyer’s perspective, in the context of strategic supply chain contracting and
coordination. An important aspect that has been overlooked from the supplier’s
viewpoint is the buyers’ dynamic behavior in response to supplier service and in
particular stockout incidents. Designing inventory control policies that account for
the adverse effect of stockouts on buyer (or customer) goodwill and future demand has
long been a challenging issue for OR/OM researchers and practitioners. Traditionally,
a penalty cost or a service level constraint has been used to address this issue, but this
approach ignores the dependence of demand on stockouts. In the last two decades,
a stream of research has emerged, whose origins can be traced to the 1970s, that
endogenizes customer reaction to stockouts into the demand dynamics, predominantly

in B2C environments and at an aggregate-demand level.

Buyer selection. In addition to diverse reactions to stockouts, buyers also have
different margins due to customized pricing arising from differences in their market
power, agreement with the supplier, sales volume, location, etc. A recent study on
wholesale price discrimination reports empirical evidence from a market where some
buyers pay up to 70% more than others for the same good on the same day (Marshall,
2020).

In the face of the buyers’ heterogeneous demand dynamics and margins, firms
must dynamically decide how many items to order in advance of demand, given that

buyers may be at different satisfaction (goodwill) levels from previous encounters,
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and which buyers to select to satisfy if the order falls short of demand. To address
the adverse effect of stockouts on buyer goodwill and future demand, firms typically
use a penalty cost or a service level constraint. This cost is supposed to reflect the
impact on future demand due to the loss of buyer goodwill following a stockout, yet
the demand is almost always considered to be independent of past service.
Moreover, in practice, firms often prioritize buyers based on their past sales (Ca-
chon and Lariviere, 1999). This approach is also reflected in many ERP systems,
such as SAP (SAP, 2022a). Prioritization based on past sales has been found to
positively affect high-priority buyers (Homburg, Droll and Totzek, 2008) although
it may also potentially undermine profitability by inducing important buyers to feel
more entitled than grateful (Wetzel, Hammerschmidt and Zablah, 2014). When the
buyers’ demand is sensitive to past service, prioritizing buyers based on past sales
has the risk of becoming a self-fulfilling prophecy. That is, if up to a certain period,
buyer ¢ happens to have higher past sales than buyer 57 and both buyers compete for
the same product, 7 will be selected, her total sales will further increase, and she will
be satisfied, positively impacting her expected future sales. On the other hand, the
total sales of buyer j will remain unchanged, and she will be dissatisfied, adversely
affecting her expected future sales. If buyer 7 happens to have higher sales than ¢ up
to the same period, the tables will be turned and j instead of i will be selected.
Sheffi (2020) discusses several product-allocation schemes used at times of scarcity,
on the occasion of the global shortage of semiconductor chips triggered by the COVID-
19 pandemic. Among them are the fair treatment of all buyers and the prioritization
of powerful buyers such as Apple and Samsung, high-margin buyers, or vulnerable
buyers, especially when the product is essential to the buyer’s (or the buyer’s cus-
tomers’) survival. As is pointed out, the downside of these approaches is that they

ignore the long-term importance of a buyer to the firm.

1.2 Thesis questions

In view of the issues discussed in the previous section, and motivated by recent

technological advances that enable the collection and analysis of big data on individual
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customers, allowing for identifying their unique repurchase behavior at different levels
of rated satisfaction (Mittal and Kamakura, 2001) or following stockouts (Fitzsimons,
2000), different types of decision-making problems and questions arise for suppliers
facing service-dependent demand. In the main part of this thesis (Chapters 2-4), we
consider three such problems, each focusing on a different setting and set of questions.

In Chapter 2, we focus on the asymmetric responses to good and bad service of
a buyer with memory of past service and its implications on the inventory policy of
the supplier. More specifically, we consider the problem of a buyer who uses a rating
scheme with a finite number of ratings, e.g., A—F, as mentioned earlier, and visits a
supplier with a rating-dependent probability, uprating/derating the supplier after an

in-stock/out-of-stock incidence. The questions that we ask are:

e What is the structure of the supplier’s optimal inventory policy as a function

of her inventory and rating?
e Can a basestock policy be optimal, and if so, under what conditions?
e Should the supplier stock more when her rating is low or high?

e What is the imputed cost of a stockout under the buyer’s rating-dependent visit

behavior?

In Chapter 3, we focus on the switching behavior of a buyer from one supplier
to another following poor service and its implication on the suppliers’ competitive
inventory policy, in a B2B setting. The setting that we consider fits the description
of the always-a-share model introduced in Jackson (1985), which assumes that a firm
making purchases of some product category repeatedly can easily switch its patronage
from one supplier to another, therefore sharing its patronage among multiple suppli-
ers. Jackson notes that in some situations suggesting always-a-share behavior, a firm
may make a series of purchases each from a single supplier but share its patronage
among suppliers over time. As examples of always-a-share firms, she lists buyers of
simple machine tools, commodity chemicals, carbon steel, and apartment building
owners who purchase major appliances, among others. Jackson (1985) contrasts the

always-a-share model with the lost-for-good model, where a firm faces high costs of
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switching suppliers and therefore is either totally committed to one supplier or totally
lost and committed to some other supplier. That setting is outside the scope of this

paper. Given the buyer’s always-a-share behavior, we pose the following questions:

e What is the optimal inventory policy of each supplier in response to the other

supplier’s decision?

e Do the suppliers’ inventory policies reach equilibrium and if so, is it unique, and

how is it related to their myopic inventory policy?

e What is the optimal joint inventory policy and gain for the suppliers if they

team up?

e What are the implications for the buyer if the suppliers cooperate instead of

competing?

In Chapter 4, we focus on the dynamic ordering and buyer selection decisions of
a supplier with many buyers with service-dependent demand. These decisions require
the careful balancing of the ordering cost, the current revenue from the satisfied
buyers, and the loss in future demand from the dissatisfied buyers, raising several

important questions for the supplier:
e What is the interaction between ordering and buyer selection decisions?
e How sensitive is performance to each decision?

e When does future demand matter more than the current revenue in buyer se-

lection?

e How efficient is it to order a fixed quantity and how efficient is it to select buyers

based on a fixed prioritization?

1.3 Literature review

In this section, we review the literature that is related to our work. For ease of

presentation, we organize it into three parts.
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Service-driven demand. The first model in which demand changes dynami-
cally as a function of the service level can be traced to Fergani (1976). In the last
two decades, there has been a renewed interest in similar dynamic demand models,
matching the increasing evidence from data-driven marketing studies that stockouts
have an adverse effect on long-term demand Campo, Gijsbrechts and Nisol (2003);
Anderson, Fitzimons and Simester (2006); Jing and Lewis (2011). Dynamic models
can be divided into two categories. The first considers demand at an aggregate level

and the second focuses on the individual customer level.

Notable papers in the first category are Fergani (1976), Hall and Porteus (2000),
Liu, Shang and Wu (2007), and Olsen and Parker (2008). These studies consider
single-supplier models or duopolies, where the demand of each supplier in each period
is a linear function of the market size. This assumption is key for ensuring the
optimality of basestock policies with basestock levels that are proportional to the
market size. They also assume that individual customers behave homogeneously
toward each supplier and have no memory of past service. Robinson (2016) considers
a more general demand model where in each period the mean demand changes linearly
in the number of satisfied and unsatisfied customers. The optimal policy for this model
is not in general stationary and will vary with the mean demand, which may increase

or decrease unboundedly; therefore, finding it is computationally intractable.

Notable papers in the second category are Gans (2002), Gaur and Park (2007),
Liberopoulos and Tsikis (2007), and Deng, Shen and Shanthikumar (2014). The first
two papers consider multiperiod models with multiple customers and suppliers, where
each supplier maintains a constant service level, and the customers learn about this
level from experience. Liberopoulos and Tsikis (2007) introduce a duopoly model of
two suppliers competing for one customer. Each supplier can be in any of several
“credibility levels” that affect the probability of being chosen by the customer. The
evolution of these levels depends on the service experiences of the customer. Based
on a restricted numerical study, they find that for geometrically distributed demand,
the optimal stationary policy of the two suppliers at equilibrium is a basestock policy.
Deng et al. (2014) consider a similar model to that in Liberopoulos and Tsikis (2007)

involving a single supplier with several customers. In each period, each customer



10 CHAPTER 1. INTRODUCTION

demands exactly one unit with a probability that depends on his contentment level,
which can be in any of two states: satisfied or unsatisfied. They show that the optimal

inventory level always increases in the number of satisfied customers.

Supplier competition. Numerous papers explore how a single buyer can stim-
ulate competition among multiple suppliers by allocating her demand to the suppli-
ers based on their price, service quality, or other competitive dimensions. In Kalai,
Kamien and Rubinovitch (1992), Gilbert and Weng (1998), Cachon and Zhang (2007),
Benjaafar et al. (2007), and Elahi (2013), the suppliers are modeled as Make-to-Order
(MTO) or Make-to-Stock (MTS) service systems, and the buyer allocates her demand
to the suppliers based on their service quality, measured in terms of service rate, lead
time, or service level, or assigns all the demand to a randomly selected supplier, where
the probability of selecting a supplier is based on the supplier’s service quality. In Ha,
Li and Ng (2003) and Jin and Ryan (2012), the suppliers are modeled as EOQ firms
and MTS queues, respectively, and demand is allocated based on price and delivery
frequency or price and service level, respectively. In many cases, it turns out that
allocating the demand to one supplier, i.e., selecting a supplier, is optimal for the
buyer. A review of some of these models can be found in Wang, Eallace, Shen and
Choi (2015).

Some papers investigate the sourcing strategy of a buyer and the pricing strategies
of unreliable suppliers under an environment of supply disruption (Babich, Burnetas
and Ritchken, 2007; Li, Wang and Cheng, 2010). There is also a sizable literature
on newsvendor competition as is manifested by the review articles that have ap-
peared in the last two decades (Cachon and Zhang, 2006; Nagarajan and Sosi¢, 2008;
Chinchuluun, Karakitsiou and Mavrommati, 2008; Silbermayr, 2020). Much of this
work involves lateral transshipments, consolidation of inventories at a central loca-
tion, and product substitution or complementarity in case of a stockout. In all of
these works, the buyer has no memory of service, so the models are essentially single-
period. Dynamic volume allocation in an infinite-horizon setting is considered in Li
et al. (2013) in a problem in which the buyer induces the desired supplier behavior

through business share allocation based on supplier performance.

Buyer selection. The problem of heterogeneous customer selection has been
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extensively studied under the assumption that service does not affect demand. Two
paradigms of selection problems are the inverse newsvendor Carr and Lovejoy (2000);
Choi and Ketzenberg (2018); Bavafa, Leys, Ormeci and Savin (2019) and the selective
newsvendor Taaffe, Romeijn and Tirumalasetty (2008); Taaffe et al. (2008); Chahar
and Taaffe (2009); Abdel-Aal and Selim (2019). In the first problem, a firm with a
given service level and several customer classes, each with a predefined priority and a
random demand, must choose the fraction of each class to serve, i.e., it must choose
the demand distribution. In the second problem, a newsvendor serving multiple
buyers must decide the order quantity and select which buyers to serve. The demand
of each buyer is influenced by the marketing or pricing effort, and buyer selection
takes place before the demand realization. In a related paper, Durango-Cohen and
Li (2017) consider a supplier who must decide her order quantity and allocate it to
several heterogeneous customers with contracts to demand within a specified range

and the right to receive a penalty for any unmet demand within that range.

Another stream of research focuses on the strategic competition of customers
under a given capacity allocation policy of the supplier. An example is the turn-and-
earn policy where the supplier allocates capacity to customers based on past sales,
motivating customers to influence their future allocations by increasing their sales
Cachon and Lariviere (1999); Lu and Lariviere (2012).

Adelman and Mersereau (2013) consider the problem of a supplier who must dy-
namically allocate capacity among a finite number of heterogeneous customers with
different margins and different demands that depend on past fill rates. They inves-
tigate when and how goodwill matters and they demonstrate that an approximate
dynamic programming policy that rationalizes the fill rates that the firm provides
to each customer can achieve higher rewards than margin-greedy and Lagrangian-
derived policies. They interpret this policy as prioritizing each customer using an
“adjusted margin” that augments the customer’s margin by an amount that values

the goodwill impact of meeting current demand.
Moreover, Klein and Kolb (2015) considers a provider with several customers,
each belonging to one of a finite number of segments defined by a combination of cus-

tomer properties, recency, and purchase intention. The provider must decide which
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customers with positive purchase intention to accept and which to deny. The prob-
lem is formulated as an MDP where the provider’s action determines the transition
probability of each customer from one segment to another, and the overall state is the
number of customers in each segment. A myopic policy that maximizes the current
revenue is compared with the optimal MDP solution in a numerical study of a prob-
lem with up to two customer properties and two recency states. In both papers, the
firm’s capacity is fixed. None of the two papers provides analytical results on the op-
timal policy, although Adelman and Mersereau (2013) shows that the margin-greedy
policy is asymptotically optimal when the number of customers tends to infinity, and

optimal when the demand is deterministic.

1.4 Thesis organization and contributions

The main contribution of this thesis is the development and analysis of three novel
stochastic models, presented in Chapters 2-4, that provide insight and decision sup-
port for firms (suppliers) facing service-dependent demand. The main questions that
each model addresses were presented in Section 1.2. In this section, we briefly describe
each model and the main conclusions that we draw from its analysis.

In Chapter 2, we develop a multiperiod model of a supplier (she) selling items
to a buyer (he) who rates the supplier based on the history of her service, measured
in terms of in-stock/out-of-stock incidents. At the beginning of each period, the
supplier orders a quantity, ahead of the demand, based on her rating and inventory
surplus/backlog, and receives it before the end of the period. At the end of the period,
the buyer generates a random demand and selects the supplier to fill this demand with
a probability that depends on her rating. If the supplier fails to meet all the demand
at once, the buyer backorders the unmet demand with her but downgrades her. In
addition, the supplier incurs a backorder penalty cost that is proportional to the
shortage. This cost is a direct measurable cost of the shortage, e.g., a price discount
per item short or an overtime cost for the procurement and handling of the backlogged
items. If the supplier meets all the demand at once, she is upgraded by the buyer and

carries over any leftover inventory to the next period. Using dynamic programming
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principles and Markov chain analysis, we draw the following conclusions regarding
the supplier’s inventory control policy.

Myopic policy. The supplier’s myopic (single-period) inventory control policy is a
basestock policy with non-negative, rating-dependent basestock levels that are non-

decreasing in her rating.

Structure of optimal policy. For the infinite-horizon discounted expected profit
problem, the optimal policy partitions the inventory space in multiple order-up-to
and do-not-order intervals, defined by successive order-up-to and reorder points, for
each rating. The optimal decision—order up to the next point or do not order—
depends on whether ordering reduces the supplier’s risk of being downgraded enough
to offset the increase in her ordering and inventory holding costs. This tradeoff
depends both on the supplier’s inventory level and the probability density function of
the buyer’s demand. We show that the smallest order-up-to-point for each rating is
greater than or equal to the basestock level of the myopic policy for that rating. This
implies that it is optimal to satisfy all backorders and that using the myopic policy
will lead to profit losses. Unlike the basestock levels of the myopic policy, the smallest
order-up-to points are not necessarily non-decreasing in the rating, even though the
discounted expected profit is. Numerical results show that it can be optimal for the
supplier to hold more inventory in intermediate ratings than in extreme ratings and

that the more erratic the buyer’s response to service, the higher the inventory level.

Bounds on optimal policy. We derive upper and lower bounds on the optimal
inventory control policy and numerically evaluate them and compare them against
existing bounds. Our results show that in many instances, a heuristic basestock
policy with rating-dependent basestock levels that are higher than the respective

myopic levels and are non-decreasing in the rating, is near-optimal.

Optimality of basestock policies. We show that under a certain condition on the
buyer demand distribution, the optimal policy reduces to a basestock policy with
non-negative, rating-dependent basestock levels. This condition is always satisfied if
the demand density function is non-increasing. We also present a condition for the
optimality of a policy that is effectively basestock. Two special cases of this condition

arise when either the smallest order-up-to points or the smallest reorder points are
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increasing in the rating. We show that the smallest order-up-to points for the first two
ratings are always increasing in the rating, implying that in the case of two ratings,
a basestock policy is effectively optimal. For this case, we also derive analytical
expressions for computing these points and evaluate them for two distributions of

buyer demand (exponential and uniform).

Constant buyer demand. For the case of constant buyer demand, we show that
for the average expected profit problem, the optimal policy is a basestock policy in
which the supplier: (i) always operates in a make-to-stock mode with no backlogs
and her rating is absorbed in the largest level, (ii) always operates in a make-to-order
mode only with backlogs, and her rating is absorbed in the smallest level, or (iii)
operates in a make-to-stock mode in all ratings, except for the largest rating where
she operates in a make-to-order mode, and her rating is absorbed in the largest two
values, alternating between them. We derive conditions for determining which of
the three above cases is optimal. These conditions depend on the supplier selection
probabilities in the largest, second largest, and smallest rating only, as well as on the
revenue and cost parameters. We show that in the case of two ratings, the policy of

alternating between the two ratings is never optimal.

Fized stockout cost. Finally, we consider a variant of the newsvendor model studied
in Cetinkaya and Parlar (1998), with a fixed stockout cost, representing the buyer’s
loss of goodwill due to a stockout, in addition to the variable backorder cost. To
estimate the fixed cost, we relate this model to the service-driven demand model
developed in this chapter, operated under a basestock policy with a common basestock
level for all ratings. Numerical results for different functional forms of the supplier
selection probability w.r.t. to the rating show that if the imputed fixed cost is used in
the newsvendor model to compute the optimal basestock level, the drop in the average
expected profit with respect to the maximum profit is limited on average. However,
choosing an arbitrary value for the fixed stockout cost can lead to significant profit

losses, especially if this value is smaller than the imputed value.

In Chapter 3, we develop a stylized model of two newsvendor-type suppliers

with inventory carryover and backordering (we also discuss the extension to multiple
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suppliers) who provide the same product to an always-a-share buyer (she) and com-
pete for the buyer’s business over an infinite horizon. There is little room for price
differentiation because the product is standard and the suppliers have anyway been
shortlisted among a larger group of candidates based on their more or less equally

competitive prices. Therefore, the suppliers compete on the service they provide.

Among the various determinants of service quality, we restrict our attention to
product availability which has emerged as a decisive factor in the wake of severe global
shortages that have exposed the vulnerability of supply chains to the disruption of

major catastrophic events.

To enjoy the best availability advantage, the buyer in our model plays one sup-
plier (him) against the other by rewarding availability with repurchase (loyalty) and
punishing stockouts with switching (disloyalty) in the next period. Faced with this
“carrot-and-stick” behavior, each supplier must decide his ordering policy to max-
imize his long-run expected average profit by balancing his current inventory and
backorder cost against his future profit loss resulting from ceding the buyer’s loyalty

to his competitor.

Using stochastic optimization and game-theoretic analysis, we characterize the
optimal inventory policy of the suppliers under competition and relate it to their
myopic policy. To measure the service level gain of the buyer and the respective
profit loss of the suppliers brought about by competition, we also characterize the
optimal joint policy of the suppliers if they decide to cooperate. To better comprehend
the results and their implications, we apply them and evaluate them numerically in
the case where the buyer’s demand is exponentially distributed. Finally, we extend
the results to more than two suppliers under a round-robin supplier selection policy.

Based on our results, we draw the following conclusions.

Optimal inventory policy. The myopic policy of each supplier is identical to the
basestock policy of a multi-period newsvendor who seeks to minimize his expected
inventory and backorder cost. The optimal inventory policy of each supplier under
competition and cooperation is also a basestock policy with a non—negative “active”
basestock level when the supplier has the buyer’s loyalty and a zero basestock level

when he does not.
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Competition. Under competition, each supplier raises his active basestock level
above his myopic level, sacrificing his myopic profit to extend his stay at the top of the
buyer’s list. The optimal active basestock level of each supplier is increasing in the
other supplier’s active level, sparking inventory competition between the suppliers to
the buyer’s advantage. Under a mild condition on the buyer’s demand distribution,
implying that the demand density function does not increase sharply above each
supplier’s myopic basestock level, the best response of each supplier has a unique
global maximizer above his myopic basestock level that guarantees the existence of
a pure-strategy Nash equilibrium which is symmetric for symmetric suppliers. The
equilibrium is unique if the suppliers’ best response functions are contraction map-
pings or if the suppliers are symmetric (under a stricter condition on the buyer’s

demand distribution).

Cooperation. Under cooperation, each supplier sets his active basestock level at
his myopic level, if the myopic profits of both suppliers are the same. Otherwise,
the supplier who has the smallest myopic profit, sets his active basestock level below
his myopic level, ceding a part of his long-term demand share to the more profitable
supplier, who sets his active basestock level above his myopic level but below his
active basestock level at equilibrium under competition. Under a condition that
again involves the buyer’s demand density function, the active basestock level of the
less profitable supplier drops to zero, meaning that this supplier cedes all his demand
share to the more profitable supplier, except for the occasional times when the buyer

returns to him for one period following a stockout by the more profitable supplier.

The buyer’s perspective. Cooperation benefits the suppliers as it results in re-
duced inventories for them. This cancels out the high—fill rate advantage that the
buyer enjoys thanks to her carrot-and-stick behavior when the suppliers compete. To
counter this setback, the buyer can charge the cooperating suppliers an extra backo-
rder penalty cost rate every time she faces a stockout. For symmetric suppliers, the
penalty rate that makes the buyer fully recover her fill rate under competition is in-
creasing in the symmetric active basestock level of the suppliers at equilibrium, which
hinges on the buyer’s demand distribution and the suppliers’ margin-to-interest-rate

ratio.
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Exponentially distributed demand. When the buyer’s demand is exponentially
distributed, the conditions guaranteeing the uniqueness of the maximizer of the best
response function of each supplier and the Nash equilibrium are satisfied. In this case,
we obtain exact expressions for the active basestock levels at equilibrium and under
cooperation. The former expressions depend mainly on the tradeoff between the
supplier’s inventory cost rate and profit margin, while the latter expressions depend

on the tradeoff between the suppliers’ inventory and backorder cost rates.

Multiple sourcing. Most of the general results for two suppliers extend to multiple
suppliers if the buyer uses a round-robin policy where she switches suppliers on a

circular basis after each stockout.

In Chapter 4, we study a newsvendor model of a firm that orders items for a
group of repeat buyers. The buyers generate different revenues and have different
average visit rates that depend on whether they are satisfied or dissatisfied with their
last visit. If the demand exceeds the order quantity (current capacity), the firm
must select which buyers to serve without violating capacity. We formulate the firm’s
problem as an average-profit Markov decision process (MDP) whose state is the vector
of buyer satisfaction states and where the decisions are made in two stages: Before
the demand is realized (ex-ante), the firm must decide its order quantity, and after

the demand takes place (ex-post), it must select which buyers to serve.

Using stochastic analysis, we characterize the myopic policy and the optimal policy
for two buyers, and we provide some properties and conjectures on the optimal policy
for multiple buyers. We also numerically compare three Lagrangian relaxation-based
index policies for selecting buyers, where an index policy is defined as an ex-ante
prioritization of buyers based on the value of some function (index). The three policies
are the Lagrangian index, the Whittle index, and the active-constraint index policy.
The index in each policy is derived by relaxing the capacity constraint of the original
problem and solving a separate problem for each buyer using a penalty price that
internalizes the relaxed constraint.

In the Lagrangian index, the price is uniform (common for all buyers) and arbi-
trary. The price that we use in our numerical experiments is derived in closed form

as the solution of the Lagrangian dual. This price depends on capacity and yields the
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tightest bound of the original problem. In the Whittle index, the price is discrimina-
tory (buyer-specific) and independent of capacity. In the active-constraint index, the
price is also discriminatory red but is applied only when demand exceeds capacity, so
it depends on both capacity and the demand characteristics of all buyers. Based on

our results, we draw the following conclusions.

Optimal buyer selection. When the order quantity suffices to cover the demand
of all but one buyer, the optimal selection policy is an index policy where the index
of each buyer (she) is increasing in three terms: her revenue rate, the loss in her
future demand (average visit rate) if she is not served, and the type-I service level of
all other buyers if she is served. This result enables the full characterization of the
optimal selection policy for two buyers. In general, however, the optimal selection is
not index-based but depends on the realization of demand. Our analysis shows that
it tends to maximize the current revenue if the buyers’ ex-post satisfaction level is

high and maximize future demand if it is low.

Index-based selection. The three Lagrangian relaxation-based index policies that
we compare have varying degrees of efficiency depending on how well they internalize
the relaxed constraint into the index. The Whittle index is simply the revenue rate, so
it does not internalize capacity. Prioritizing buyers based on their revenue rates, while
myopically optimal, can be arbitrarily bad in the long term because it ignores future
demand. The Lagrangian index outperforms the Whittle index because it accounts
for the loss in future demand and leads to the required usage of capacity on average

through the uniform price that it uses.

The active-constraint index depends on the same three terms as the optimal index
for the above-mentioned case where the order quantity is enough to cover the demand
of all but one buyer and is optimal in that case. The third term in particular accounts
for the effect of the selection of one buyer on the stockout probability of the other
buyers, based on their satisfaction states. It makes the firm dynamically readjust
its goal between maximizing the current revenue and future demand based on the
ex-ante satisfaction state vector, echoing the observed optimal policy, and leading
to more well-balanced satisfaction states and service levels among the buyers. Our

numerical results show that the active-constraint index policy is near-optimal.
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Optimal and fized order quantities. Under optimal buyer selection, the optimal
order quantity is non-decreasing in the satisfaction state, matching supply to demand.
If buyers are selected red suboptimally, the firm may benefit from ordering fewer items
in higher satisfaction states if this allows it to reach more profitable states which
cannot be approached with the suboptimal selection policy.

For two buyers, the optimal order quantity is fixed for all satisfaction states,
under the optimal buyer selection. If the firm selects buyers inefficiently, the fixed
order quantity may increase or decrease as the firm tries to make up for the loss
of efficiency by overstocking or understocking, respectively. This means that it may
prefer to satisfy both buyers all the time or not satisfy any buyer at all rather than
prioritize the wrong buyer. For more buyers, using a fixed order quantity can be quite
efficient if this quantity is optimally chosen, but can lead to severe losses if it is not.

Finally, Chapter 5 provides a summary of our main findings.

Supplemental material for Chapters 2—4, including proofs, can be found in Ap-

pendices A—-C, respectively.



Chapter 2

Inventory policies when buyer

demand is driven by past service

2.1 Introduction

In this chapter, we develop a multiperiod model of a supplier (she) selling items to
a buyer (he) who rates the supplier based on the history of her service, measured
in terms of in-stock/out-of-stock incidents. In Section 2.2, we develop the service-
driven demand model. In Section 2.3, we determine the myopic policy, derive bounds
on the optimal policy for the infinite-horizon problem, and present the structure and
properties of the optimal policy. In Section 2.4, we explore the optimality of basestock
policies, and in Section 2.5, we characterize the optimal policy for the constant-
demand case. In Section 2.6, we impute the fixed stockout cost in the newsvendor
model from the service-driven demand model developed in Section 2.2. In Section
2.7, we present numerical results, and in Section 2.8, we summarize the results and
propose directions for future work. Supplemental material for this chapter, including

proofs, can be found in Appendix A.

20
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2.2 Model description

A profit-maximizing supplier sells items to a buyer. The buyer rates the supplier based
on the history of her service, defined in terms of in-stock/out-of-stock incidents. In
each period t, the supplier orders a non-negative quantity based on her current rating
a; and inventory level x;; ay belongs to a finite set of discrete values A = {1,..., M},
e.g., as in the A—F score system mentioned earlier, and x; can be positive or negative,
indicating surplus or backlog, respectively. Due to her lead time, the supplier places
her order at the beginning of the period, ahead of the buyer’s demand, in a make-
to-stock mode Benjaafar et al. (2007). This type of ordering process is common
in practice including the computer and apparel industries Tang and Tomlin (2008),
where manufacturers “preposition” (produce or purchase prior to demand and hold
inventory) buyer-specific, semi-finished components with long lead times that are
incorporated into end-products with much shorter lead times, e.g., ICs for specific
types of printers, or greige fabric (a fabric that has been woven or knitted but not
yet dyed or printed) for specific types of sports garments. The order arrives before

the end of the period, raising the supplier’s inventory level to y, > x;.

At the end of the period, the buyer demands a quantity w, and selects the supplier,
with probability ¢,,, or an outside source, with probability q,, = 1 — q,,, to fill
this demand; q,, is referred to as the rating-dependent selection probability of the
supplier. The demands {w;,t = 0,1,...} are based on the buyer’s needs and are
independent of the supplier’s past service. We assume that they i.i.d. continuous
random variables with p.d.f., c.d.f., and mean, f(-), F(-), and 0, respectively. Based
on these assumptions, the demand seen by the supplier in period ¢, d;(cy), is given
by

dy(oy) = { G WD e (2.1)

0, WwW.p. Qa-
For notational simplicity, henceforth we will drop the dependence of d;(ay) on «y. If
the supplier is not selected by the buyer, her rating remains unchanged. If she is
selected, she fills all the demand or the part of it that she can cover from inventory.

If she fails to meet all the demand at once, the buyer backorders the unmet demand
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with her to ensure the uniformity and traceability of his order and receives the missing
items in the next period. In this case, the supplier incurs a backorder penalty cost
that is proportional to the shortage. At the same time, the buyer downgrades the
supplier by one rating point (unless her rating is already at its lowest value) due to

the overall disruption that the missing items cause him.

The notion that a stockout incident has a fixed adverse effect on the supplier’s

standing, irrespectively of the shortage quantity or time, has been addressed in the

PP AN14 Y

literature by assuming a “lumpsum,” “red-tape,” or “negative image” fixed cost per
stockout occasion Cetinkaya and Parlar (1998) or a “type-1” service constraint impos-
ing a minimum probability that demand will be immediately served from inventory.
An example of this effect is when a production line is stopped whether 1 unit or 100
units are short Nahmias and Olsen (2015). Another example is when a supplier faces
buyer loss if the demand from a buyer cannot be met a certain number of times, as in
the case of a pharmaceutical distributor selling medicines to pharmacies Saracoglu,
Topaloglu and Keskinturk (2014). In our model, we incorporate this effect into the

demand dynamics through the rating process.

If the supplier meets all the demand at once, she is upgraded by one rating point
(unless her rating is already at its highest value, M), and carries over any leftover
inventory to the next period. By holding inventory, she expects to fully meet the
buyer’s demand in the next period and improve or maintain her rating. Alternatively,
she may choose not to hold inventory, in which case she will operate in a make-to-order
mode, compromising her rating. Reserving inventory for a specific buyer is not that
unusual, especially if this buyer has agreed to purchase a minimum order quantity
per period on average or has a predominant position among the supplier’s partners.
Competition that breeds demand for customized make-to-stock is also reported in
cases where a buyer places duplicate orders to several suppliers and buys from the
supplier who fills the order first, canceling all other orders Li (1992). This practice
is common for microchip suppliers in the semiconductor industry where yields and
processing times are unpredictable, lead times are long, and products are highly
customized. A similar practice for network product suppliers is reported in Armony
and Plambeck (2005).



2.2. MODEL DESCRIPTION 23

Based on the above assumptions, the supplier’s inventory state is updated as

follows,

Y¢ — W, W.P. Goy,
T =Y — dy = B (2.2)
Y, W.P. Qo

and the supplier’s rating state is updated as follows,

ap+0t —6- . W.p. qa,,
T B R (2.3)
at7 Wp qat7
where
502 = 1{thyt,at<M} and 5;,5 = 1{wt>yt,at>1}7 (24>

and 1y, is the indicator function.

As is natural to assume, the probability that the buyer selects the supplier is
non-decreasing in the supplier’s rating. We also assume that the buyer may select
the supplier even if her rating is at the lowest level. This would be the case, e.g., if
the two parties had agreed on a minimum average order quantity per period, ¢;0. In

mathematical terms,

Got1 = o, €{1,...,M — 1} and ¢; > 0. (2.5)

While the selection probability is non-decreasing in the supplier’s rating, its exact
functional form is not restricted and depends on the buyer’s response to service. Such
a response may in general be asymmetric, as has been documented in the behavioral
economics literature in a B2C context Kahneman and Tversky (1979). Indicatively,
in a recent study of supermarket consumers, Koos and Shaikh (2019) reports an
asymmetric S-shape relationship between customer dissatisfaction due to stockouts
and customer response. A different large-scale study of automotive customers finds
that the functional form relating rated satisfaction to repurchase behavior exhibits
increasing returns Mittal and Kamakura (2001). On the other hand, under loss-

aversion Tversky and Kahneman (1991), the functional form should exhibit decreasing
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returns. These behaviors are different and depend on the buyer’s characteristics and
the market context. The proposed model is flexible and can accommodate different

behavioral patterns whether the setting is B2C or B2B.

In each period, the supplier incurs a cost ¢ per item ordered and receives a revenue
r per item sold. The quantity sold is min(y;, d;). She also incurs an inventory holding
cost h per item in inventory and backorder cost b per item short, at the end of the
period. We assume discounting with rate 8 < 1. To ensure that the supplier can be
profitable even with backorders, we also assume that Sp > b, where p is the per unit
profit defined as p =r — c.
The profit of the supplier in period t is r[(x;)” + min(y:, di)] — c(yr — x) — h(ye —
d)t —b(d; —y:)", where (z)* = max(z,0) and (x)” = (—2)", 2 € R. After replacing
min(y;, dy) and (y, — dy)* with dy — (dy — y;)™ and y, — dy + (dy — y;) T, respectively,
and rearranging terms, the profit can be written as r(x;)” + cxy + (r + h)d; — (¢ +
h)ys — (r + b+ h)(d; — y;)". Rolling back the terms r(z;)” and cx; into period
t — 1 using (2.2) and discounting them at rate (3, the profit can be redefined as
Br(zig1)” + Bexipr + (r+h)dy — (c+h)ys — (r+b+h)(dy —y:) " (see Olsen and Parker
(2008) and Robinson (2016) for similar treatments). For ¢t = 0, r(xo)~ and cz( are
not rolled back but are added to the total profit as an extra term r(xzq)~ 4 cxg, which
can be rewritten as c¢(xg)* + p(xy)~, after replacing zo with (z9)" — (x¢)~. Finally,
after replacing ;41 and (x;41)” with y; —d; and (d; —y;)™, respectively, and collecting

terms, the redefined profit in period t reduces to:
Ksdy — Ky, — Ko(dy — yt)+7

where K, K5, and K3 are positive constants given by

Ki=(1=p)c+h, (2.6)
Ko=(1-8)r+b+h=K +(1—p8)p+b, (2.7)

Essentially, the redefined profit in period ¢ refers to the profit in the interval starting
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after the arrival of the supplier’s order in period ¢ and ending before the arrival of
her order in period t + 1; so, it is expressed in terms of y; instead of z;. From the

above definitions and the assumption Sp > b, K, K5, and K3 are ordered as follows:
0< K1 < Ky < Ks. (2.9)

The problem of the supplier is to select order-up-to levels y; > xz;,t = 0,1,..., to

maximize her discounted expected profit over an infinite horizon, I1,,(x¢), defined as
Moy (20) = c(w0) ™ + p(20) ™ + Vi (w0), (2.10)

where V,,,(z9) is a value function given by

Vao (:EO) - maX Edt {Z 6 KSdt Klyt KZ(d yt)+] } .

Yt 2Tt
t=0

The term in the square brackets is the redefined profit in period . Its expected value,

denoted by A, (y¢), is given by
Aoét (yt) = K3q0£t0 - Lat<yt)7 (211)
where Ly, (y;) is the expected cost of the supplier in period t and is given by

Lo, () = K1y + Ks [qa, B(ye) + Ga, (ve) 7] (2.12)

with B(y) denoting the expected backlog, defined as B(y) = E[(w —y)*]. With these

definitions, V,,,(x¢) can be rewritten as

Vo (o —;{135{25 Aq, (ye }

The value function V,,(z;), in any period ¢, satisfies the following dynamic pro-

gramming (Bellman) equation:
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Vat (l’t) = gl;i,m}i {Aat (yt) + ﬁEdt [Vat+1 ($t+1)} } , Ty € R, oy € A. (213)

Given the boundedness of A,,(y;) and V,, (x;), equation (2.13) has a unique solution.
From (2.11) and (2.2)-(2.4), the Bellman equation can be written as follows, after
dropping the time index:

Va(w) = Kagaf) + max Ho(y), o € R € A (2.14)
where
Hats) = ~Lo) + 8l [ Vs - widFw
# [ Ve = P )+ a0} 215

2.3 Properties and structure of the optimal policy

Before setting out to characterize the optimal stationary inventory control policy for
the infinite-horizon problem, y*(x), we determine the optimal policy for the single-

period problem—henceforth referred to as the myopic policy—denoted by y7"¥(x).

Proposition 2.1. The myopic policy is a basestock policy given by
yo(x) = max(z, SIY), (2.16)

where the rating-dependent basestock levels ST, a € A, are given by

S = p1 ({1 - qf;@T) . (2.17)

Note that K;/Ks in (2.17) is the well-known critical ratio in the newsvendor

model with surplus cost K; and backlog cost Ky — K;. This ratio is independent of
a. What makes S dependent on « is ¢, in (2.17). From (2.5) and (2.17), SI" is

non-decreasing in «. The following proposition provides properties and bounds on
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I, (z0) and V(o) for the infinite-horizon problem, where for notational simplicity

we have dropped the time index.

Proposition 2.2. For a« € A and z € R, T1,(z) and V,(x) satisfy

xlglg() I, (z) = :Izlggo Val(z) = —00, (2.18)
Va(0) > 0, (2.19)
Vy(z) > Vo(z),d > a, (2.20)
My (x) >, (2),d > a, (2.21)
_h(%gw +VE(S) < Valz) < VI (ST), (2.22)
c(a) =+ ple) = I v S,) < M) < ) +p() + 1 (55),
(2.23)

where S, are arbitrarily chosen non-negative basestock levels that are non-decreasing
in «, and VI(S,) and VV(S™) are constants that are also non-decreasing in o and

are given by expressions (A.3) and (A.6) in Appendiz A.

Inequalities (2.20)-(2.21) state that the higher the initial rating, the higher the
expected discounted profit over an infinite horizon, for the same initial inventory; how-
ever, this does not mean that the optimal inventory level is increasing in the rating.
The upper bounds in (2.22)-(2.23) are constructed by considering the myopic policy
under an ideal scenario in which oy increases by 67 whenever the buyer selects the
supplier, irrespectively of whether the demand is met or not, and remains unchanged,
otherwise. In the proof, we note that the upper bound developed for a similar problem
in Robinson (2016) is obtained by further allowing the supplier to order after observ-
ing the demand. The lower bound is constructed by considering an order-up-to policy
with rating-dependent order-up-to points S, that are non-decreasing in «. Intuitively,
S, values satisfying S, > S are likely to produce tighter lower bounds, because the
order-up-to point under the optimal policy is greater than that under the myopic pol-

icy, as we show later in Proposition 2.3. We also note that the lower bound developed
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in Robinson (2016) is V.*(0), where 0 < VF(0) < VE(S™), implying (2.19). Fi-
nally, observe that in the newsvendor model, where ¢, = ¢, @« € A, the myopic policy
is optimal and independent of o, and (2.22) becomes VE(S™) = V(z) = VUV (S™),
x < 8™ after dropping index . A quantity that plays an important role in our anal-
ysis is the difference SV, ;+(0) —V,_s-(0)] that represents the supplier’s discounted
future profit loss following a stockout when her rating is «. Although evaluating
this difference is in general computationally intractable, it can be bounded using

expressions (2.20) and (2.22), as follows:

0 < Vays:(0) =V, 5, (0) < Aq, (2.24)
where
Ra = Va[fréci(S;nf&(j) - VaLfég(Sa—(Sg)‘ (2.25)

From our discussion following Proposition 2.2, in the newsvendor model, A, = 0.
From the Bellman equation, we can derive the following properties regarding the

structure of the optimal policy, ¥ (z), and V,(x).

Lemma 2.1. The optimal inventory control policy is to satisfy all backorders, i.e.,

ya(z) > (z)*. (2.26)
Lemma 2.1 implies that y%(z) > 0. For this reason, henceforth, we will restrict
our attention to the case where y > 0. In this case, L,(y) in (2.12) becomes

La(y) = K1y + K2qa B(y). (2.27)

From the above analysis, H,(y) is continuous and tends to —oo as y — oo. More-
over, it is bounded from above and its global maximum is non-negative. In general,
it may have several local maxima, even though the per period profit is concave. This
is a major deviation—and a source of substantial difficulty in the analysis—from the
newsvendor model where the equivalent function preserves the concavity of the per-

period profit. As a result, under the optimal stationary inventory control policy, for
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each rating «, the inventory space is partitioned into regions that are separated by
multiple threshold points, S, s!, St ... st S, ... ", S"

) T ’ v ar May

with the following prop-

erties:
1) 0<% <sl <8 <. . <5 <8 <...<s" <8,
(i) H/(Si)=0and H’(S1) <0,i=1,2,...n;if S° =0, then H’(S%) <0,
(ii1) Ho(SiY) > Ho(Sh) and Hy(st) = Ho(SY),i=1,2,...,n.
The optimal policy is to order up to S’ in region R, = [s’,S’] and not order in

region R! = [S?,s't1] i = 0,...,n, where by convention, s = —oo and s"™' = co.

Note that at si,i = 1,...,n, it is optimal both to order up to S! and not order.

Figure 2.1 illustrates the optimal policy for n = 2.
4 Ve (%)

Hy(y)

A-PBp+b

- 0
R <Ry>— K} <Ri>e—RI—><—F?
Order Do not Order Donot Order Do not
up to S9 order up to Sg order up to S2 order

Figure 2.1: Optimal inventory control policy.

In mathematical terms, the optimal policy is given by the following expression:

yo(z) = Z Stliweriy + Tlicriy. (2.28)

i=0
The intuition behind the optimal policy is discussed in Section A in Appendix A
using two examples of demand density functions f(w), which suggest that n depends
on the shape of f(w) and is bounded by the number of its local maxima, which

typically is only one or two at most.
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Lemma 2.2. The derivative of the value function is non-positive, i.e.,
Vi(z) <0,z € R. (2.29)

Proof. In view of (2.28), V,(z) in (2.14) and its first derivative can be written as

follows:
Vale) = Kaqab+ 3 HolS) L puensy + Hole) L. (2.30)
1=0
V!(x) = H.(x )1{xeun SR S 0. (2.31)
Clearly, V! (x) = 0, if x € Ul R!,, as is shown in Figure 2.1. O

Expression (2.30) states that V() is constant and equal to K3q.0 + H,(S%) in
region R!. In region R, V,(z) drops parallelly to H,(y), = y, as is shown in
Figure 2.1. For z < 0, (2.30) and (2.31) imply that V,,(z) = K3q.0 + H.(S2) = V,,(0)
and V!(z) = 0, respectively. Consequently, the second integral in (2.15) becomes
V., s-(0)F(y), and H,(y) can be simplified. The simplified form of H,(y) and its

first two derivatives are

Ha) = ~La(0) + 5 {aol [ Vassz = )P (0) 4V, OF @)+ Yol |
(2.32)
H(y) = —LL(y) + 8 {qa (V5 (0) = Vi (0) + / VI — w)dF(w)
+ an;(y)},
(2.33)

H(y) = ~LLw) + B {ae [ /(1) (Vips (0) = Vs (0)) + S0V 5 (0F)

" / VI = w)dP )]+ 3,V w) ) .

The following proposition provides lower and upper bounds on S and S”, respec-

tively.
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Proposition 2.3. S™ < S% < S < Sn o € A, where S™ is given by (2.17) and
Sn is given by

7 = arg min {KQF(y) + BALf(y) < ﬁ} ,a €A, (2.35)

y>(z)* a

where A, is given by (2.25).

Proposition 2.3 indicates that the order quantity under the optimal policy is
greater than or equal to that under the myopic policy; hence, using the myopic
policy will lead to profit losses. Proposition 2.3 also provides an upper bound on the

maximum order-up-to level which is useful for designing storage capacity.

2.4 When is a basestock policy optimal?

As we saw in Section 2.3, this is not in general the case in our service-driven demand
model. However, if SO is the unique maximizer of H,(y) each «, the optimal policy

is a basestock policy with rating-dependent basestock levels S°, defined as follows:
yi(z) = max (z,5) . (2.36)

The following proposition provides a sufficient condition for the concavity of H,(y)
which ensures the existence of a unique maximum and the optimality of a basestock

policy.
Proposition 2.4. If f(y) satisfies

My o K>
fly) = BAS

y>0,Va € A, (2.37)

where A, 1s given by (2.25), then H,(y) is concave for all ., and therefore the op-
timal stationary inventory control policy is a basestock policy with rating-dependent
basestock levels given by (2.36).

Obviously, if f is non-increasing (e.g., exponential, uniform, Weibull and Gamma

with shape parameter < 1, etc.), then (2.37) immediately holds for every y > 0. Even
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if f(y) is increasing for some y, however, condition (2.37) may still hold if its r.h.s. is
large enough. Intuitively, a large value of K3/5A, means that the myopic backorder
cost is more important than future profit losses following a stockout, suggesting that
the optimal policy should be similar in structure to the myopic policy, which is a
basestock policy. Note that in the newsvendor model, A, = 0; therefore, (2.37) always
holds, verifying that the optimal inventory control policy is a basestock policy, as was
also mentioned earlier. If f(y) is log-concave (e.g., normal, logistic, Weibull, Beta,
Gamma with shape parameter > 1, etc.), then f'(y)/f(y) decreases in y Bagnoli and
Bergstrom (2005). In this case, (2.37) holds for every y > 0, as long as it holds for
y=0.

A sufficient condition for the optimality of a basestock policy that does not require
the concavity of H,(y) is H' (y) < 0,y > SY. Evaluating this condition, however, is
practically impossible, because no analytical expression for SY exists. An exception is
the case S = 0, where all order-up-to points including S° collapse onto zero, making
a basestock policy with zero basestock level (equivalent to a make-to-order policy)
optimal for rating «, and all ratings above « transient.

Finally, Proposition 2.5 provides a condition under which the optimal policy ef-

fectively is a basestock policy with rating-dependent basestock levels S°.

Proposition 2.5. The optimal stationary inventory control policy effectively is a
basestock policy with rating-dependent basestock levels S°, if

zo < min (s}) and S < min (s}/),Va € A, (2.38)

T a/>ag o'>a

where xog and aq are the initial inventory level and rating, respectively.

The proof is straightforward and is based on showing that (2.38) ensures that

0

o) Where

zy < st .t > 0, implying that z; always belongs in regions R) and R
yi, = max (z;,59,) from (2.28). Two special cases where (2.38) holds are when the
global maximizers SO (respectively, the reorder points s!) are non-decreasing in a.

These cases are given by Corollary 2.1.
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Corollary 2.1. The optimal stationary inventory control policy effectively is a base-

stock policy with rating-dependent basestock levels S°, if either

xo < So, and Sy < S0, Vo€ A, or (2.39)

+od
xo < sh, and s}, < SLHCWVO( €A, (2.40)

where xog and aq are the initial inventory level and rating, respectively.

Using the Bellman equation and the first-order conditions, we can derive condi-
tions under which SY is non-decreasing in « for all «, but these conditions are hard
to verify as they involve the simultaneous solution of many non-linear equations and
are too complicated to provide any useful insights. In fact, in some cases, it is easier
to show that S? is decreasing in « for some a. For example, it can be argued that for
M > 2, if qu = qu—1 > qar—o, then S, | > SY,. Intuitively, this happens because
in both ratings M — 1 and M, the demand distribution seen by the supplier is the
same, making the myopic profits equal. Rating M — 1, however, is “riskier” than M,
because it borders a lower rating, M — 2. To hedge against this risk, the supplier
needs to hold more inventory; hence, S, ; > S%,. An exception is the case of the
first two ratings, where it can be shown that S9 > S always. For M = 2, this further
implies that (2.39) holds, and therefore, the optimal policy effectively is a basestock
policy. This is stated in Proposition 2.6, where we also provide expressions that lead

to the computation of Sy and SY.
Proposition 2.6. S and SY satisfy
(i) S9 > SY for M > 2.
(ii) If M = 2, then, for any initial rating o = 1,2 and inventory level x < S°, the

optimal stationary inventory control policy effectively is a basestock policy with

rating-dependent basestock levels SY and SY satisfying the first-order conditions,

K1 — Kqo F(SY)  Ks(go — q1)0 — K1(S§ — SY) — Ks|qaB(S3) — 1 B(SY)]
Baaf(S9) 1= 8+ B[ F(S9) + q F(SY)]

(2.41)
fora=1,2.
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In the proof, we also provide conditions for the two special cases where SY or both
SY and S are zero and do not satisfy first-order conditions. Note that the r.h.s. of

(2.41) is independent of . Hence, the Lh.s. is the same for both o = 1,2, i.e.,

[K1 = Koqn F(SY)] 2 (93) = [ K1 — K2q2F(S3)] a1 f(SY). (2.42)

From (2.41) and (2.42), we can derive closed-form expressions for SY and S5 for
different demand distributions. For example, if w; is exponentially distributed with
mean 6, equation (2.42) yields S — SY = 01In(g2/q1), implying that S5 — SY de-
pends only on the average demand and the relative selection probabilities. Sub-
stituting SY from this expression into (2.41) and solving (2.42) for a = 1, yields
SY = fIn{max [q1(Ks + [K3(q2 — ¢1) —Kiln(q/q1)])/(1 — Bq1)K1,1]}. Similarly, if
wy is uniformly distributed in [0, 26], equation (2.42) yields S —S9 = 20(K;/K>5)(q2 —
q1)/q1q2, implying that S9 —SY depends on all problem parameters. More specifically,
from (2.6) and (2.7), it is decreasing in r and b and increasing in ¢ and h. Substitut-
ing SY from the above expression into (2.41), and solving (2.41) for a = 1, yields a

complicated expression for SY, which we omit for space considerations.

2.5 The case of constant buyer demand

In this section, we consider the case where the buyer demand is a constant 6§ > 0.
In this case, the demand seen by the supplier is still random (Bernoulli) and given
by (2.1), where w; = 0, Vt. For notational and computational simplicity, we consider
the average instead of the discounted profit criterion. Specifically, the problem of the
supplier is to select order-up-to levels y; > x4, Vt, to maximize her average expected

profit over an infinite horizon, denoted by II, defined as

II= T1_1>r010 ? g;a;i {Z Ao, (e } (2.43)

where A,, (y;) is the expected profit in period ¢ and is given from (2.11)-(2.12), after
substituting K, K», and K3 from (2.6)-(2.8) for 8 = 1, as follows:
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Ao, () = (04 h) e, — hye — (h +b) [qo, B(ye) + G, ()] - (2.44)

For this problem, we have the following results.

Lemma 2.3. If the buyer demand is a constant 6, then the optimal stationary inven-
tory control policy, y:(x) is a basestock policy with rating-dependent basestock levels

SY satisfying

(i) SY <0,a € A.

(ii) If S° < 0 for some «, then all ratings o/, > «, are not accessible from .
(iii) If S° = 0 for some «, then all ratings o/, o’ < «, are not accessible from a.

The proof is straightforward and is omitted. Lemma 2.3 implies that the optimal
policy must be searched among the following candidate basestock policies which differ
in the values of S2: (i) Policy P, : 0 < S? < 6, € A. Under Py, the supplier’s rating
will eventually be absorbed in the lowest value 1, because she will never immediately
satisfy the demand. (ii) Policy Py : S° = 6, € A. Under Py, the supplier’s
rating will eventually be absorbed in the highest value M, because she will always
immediately satisfy the demand. (iii) Policy Py_14,a € {2,...,M} : S% =0,/ <
a—Tland 0 < S% < 6,0/ > a. Under P, 1., the supplier’s rating will eventually
be absorbed in the set {a — 1, a}, because she will always immediately satisfy the
demand, when her rating is at or below a — 1, and never immediately satisfy the
demand when her rating is at or above a. Theorem 2.1 provides the conditions under
which each of the candidate policies is optimal and the resulting maximum average

expected profit.

Theorem 2.1. If the buyer demand is a constant 0, the optimal basestock levels S°

and the resulting mazimum average expected profit I are given by the following table,

(p — b)qrr—1 + /[(p — b)qu—1]* + 4(p + h)hqrr—1

h
where @y = 7, Q3 =

b+h 2(p+h)
h p—20b (p - b)QlQMfl
:—+ s f— .'
R N 7 P Wy Py A P
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Optimal policy S II Condition
Py 0 [(p+ h)qar — )0 qu > max[Qq, min(Q1, Q3)]
Py 0 (p—b)qt gy < min(Q2, Q4)
2p — b+ h)qy—1 — hlqub .
Pr—am 01 azrry (2 Jau-1 = hlqu Q4 < qur < min(Qy, Q3)
qm—-1+qm

Theorem 2.1 states that the only policy that can be optimal, besides P, and
Py, is Pyr—i - The conditions under which each policy is optimal have the form of
inequalities involving the selection probabilities of the extreme ratings, ¢, gar—1, and
qu, and are independent of ¢o, ..., qyr—2. These conditions partition the ¢1—qy—1—qns
space into regions where only one policy is optimal. On the boundaries separating
two regions, the policies that are optimal on either side of the boundary yield the
same expected profit, hence they are both optimal.

Figure 2.2 shows three representative graphs in the ¢;—qys space, displaying the
regions where the three policies are optimal, for p = 4.8, h = 3,0 = 1, and three
different values of gps_1, respectively. The regions where Py, Py_1, and P, are
optimal are filled in dark gray, light gray, and white, respectively. Note that not all
parts of these regions are feasible. The feasible parts are in the top left quadrant of

each graph where ¢; < qp;—1 < qu- The other three quadrants are non-feasible and

are shaded with stripes.

N N

0 qdm-1 h
b+h
(b):qu-1 =103

1q;

h

0 qum-1
b+h

(©):qy-1 =0.2

Figure 2.2: Optimal inventory control policy for p = 4.8, h = 3, b = 1 and different

values of qp_1.

From Theorem 2.1, it follows that if gy > h/(b+ h), policy Py outperforms the
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other two policies, irrespectively of the supplier’s profit margin p and the buyer’s re-
action to stockouts expressed by the other selection probabilities (see also the proof).
This condition holds if h/b is relatively small and/or g is relatively large. In both
cases, the expected inventory holding cost is limited. Graph (a) in Figure 2.2 rep-
resents a case where qy—1 > h/(b+ h) and therefore g,y > h/(b+ h). In this case,
Py outperforms the other two policies for all feasible values of ¢; and q,;; therefore,
region Py, entirely covers the feasible quadrant.

Graph (b) shows a case where h/(2p + h — b) < qu—1 < h/(b+ h). In this
case, the feasible quadrant contains all three regions. If ¢y is smaller than h/(b+ h)
but relatively larger than qy;_1, the supplier would incur a significant profit loss if
she allowed her rating to drop below M therefore, the overall optimal policy is Py,
irrespectively of ¢;. If gy and gy;_1 are close to each other but significantly larger than
q1, Par—1,0 1s overall optimal, because it keeps a better balance between inventory
and backlog costs than P, does, without sacrificing revenues too much, since qp;_1
is close to qp. Finally, if gps, qar—1, and g; are close to each other and are not too
high, P; is overall optimal, because it eliminates inventory holding costs, which can
be quite high, given that the selection probabilities are not too high.

Graph (c) shows a case where ¢y~ < h/(2p + h — b). In this case, the feasible
quadrant is covered by regions FPp; and P only. Pa_1 s is never optimal, because
qum—1 is too small and close to ¢; and is overtaken by P, when q,; is also small, as
was explained earlier. If ¢, is large, on the other hand, Py, is overall optimal.

Finally, it is straightforward to show that in the case of two ratings (M = 2),
Theorem 2.1 reduces to Corollary 2.2.

Corollary 2.2. If M = 2 and the buyer demand is a constant 6, the optimal bases-
tock levels S° and the resulting mazimum average expected profit II are given by the

following table:

Optimal policy S? II Condition
Py 0 [(p+h)ga—"nl0 q>Q
Py 0 (p—0)q:0 G2 < Q2
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Corollary 2.2 states that when M = 2, the option of alternating between ratings
1 and 2, i.e., policy P9, is never optimal. Indeed, under such a policy, the supplier
would order up to 8 when o = 1 and order up to zero when o = 2, which would
imply that S9 < S?. However, as we have shown in Proposition 2.6 for the general

case where the buyer demand is stochastic when M = 2, S9 > SY.

2.6 Imputing the fixed stockout cost newsvendor

model

As was mentioned earlier, Cetinkaya and Parlar (1998) studied an extension of the
newsvendor model with a fixed stockout cost in addition to the proportional backorder
cost. One of the interpretations of the fixed cost is that it is a penalty for the buyer’s
loss of goodwill and hence future demand, due to a stockout. How to estimate this
cost, however, remains questionable. To address it, we consider a similar model, which
we refer to as F'S, and impute the fixed stockout cost in this model by relating it to
the service-driven demand (SD) model developed in Section 2.2. In the FS model, we

assume that the demand seen by the supplier in each period ¢ is given by:

dt _ W, W.P. ¢, (245>
0, w.p.q.

where w; is the buyer demand and ¢ is the probability that the buyer selects the
supplier; w; has the same distribution as in the SD model, but unlike in that model, ¢
is constant and independent of past service. The per period profit is identical to that
in the SD model, with the addition of a fixed penalty cost per stockout incident l;, and
is given by r{(z¢)” +min(ys, di)] — c(ye — 2:) — h(ye — de) ™ — b(de — 1) " — Bl{dt>(yt)+}-
Cetinkaya and Parlar (1998) consider the same expression for the per period profit
without the term r(x;)~. Moreover, the fixed stockout cost term in their model is
Bl{dt>yt} instead of Bl{dt>(yt)+}, because they assume that the buyer always selects the
supplier, hence, P(d; = 0) = 0. Similarly to the SD model, the redefined profit in the
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FS model is K3d; — K1y, — Ko(dy —y)* — 61{dt>(yt)+}' Its expected value, A(y,), is:
Alyr) = K3q0 — L(ye), (2.46)

where L(y;) denotes the expected cost of the supplier in period ¢, and is given by:
L(y:) = Kvye + Ks [qB(ye) + d(ye) ] + baF (). (2.47)

Expression (2.47) is the same as (2.12) with the addition of the last term and
without the dependence on the rating. Proposition 2.7 gives the optimal single-period

(myopic) policy for the F'S model.

Proposition 2.7. If f(y) satisfies:

=
S
~—
=

2

< =

fly) = b’ (248)

then A(y),y > 0, is concave, and therefore the myopic inventory control policy in the

FS model is a basestock policy with basestock level:

S™ = arg;glin {Kl — KyqF (y) — bqf(y) > 0} . (2.49)
y>

Expressions (2.48) and (2.49) are similar to expressions (20) and (21) in Cetinkaya
and Parlar (1998), except that there, ¢ = 1 and K, equals r + b + h instead of
(1 — B)r + b+ h, because of the omission of the term r(z;)” in the per period profit,
as was mentioned earlier. Condition (2.48) is also similar to condition (2.37) in
Proposition 2.4, except that the latter contains A, in place of b. This implies that b
can be interpreted as the supplier’s maximum discounted future profit loss following
a stockout. Assuming (2.48) holds, it follows from (2.49) that if bf(0) > K1 /q — Ko,
then S™ is the unique positive solution of K| — KyqF(y) — l;qf(y) = 0; otherwise,
S™ = 0. Note that if f(y) is non-increasing, (2.48) immediately holds, and S™ is the
unique solution of (2.49). For example, if w; is exponentially distributed with mean
0, (2.49) yields S™ = 6In{max[q(K, + b/0)/Ky,1]}. Similarly, if w, is uniformly
distributed in [0, 26], (2.49) yields S™ = [b+ (K, — K1/q)20]" /K.
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Note that under condition (2.48), the myopic policy in Proposition 2.7 is optimal
also for the infinite-horizon problem. For the discounted expected profit criterion,
this has been shown in Cetinkaya and Parlar (1998). For the average expected profit
criterion, it can be shown, e.g., by using the vanishing discount method Beyer, Chang,
Sethi and Taksar (2010). In the latter case, the optimal basestock level is given by
(2.49) for p = 1. For computational and notational simplicity, here, we consider the
infinite-horizon expected average profit criterion. In the FS model, b is supposed to
reflect the cost from the loss in future demand due to the loss of goodwill following a
stockout; yet, the demand is assumed to be stationary and independent of past service.
Moreover, there are no guidelines on how to select b. Choosing bin an arbitrary way
may lead to potentially significant profit losses. To address this issue, we propose to
estimate b by linking the FS model to the SD model which explicitly incorporates the
buyer’s response to service into the demand dynamics. Because in the FS model the
supplier uses a basestock policy with basestock level S™ given by (2.49) (assuming
(2.48) holds), we presume that the linked SD model is also operated under a basestock
policy with a common basestock level S for all ratings. We refer to this model as the
FS-equivalent SD model. To estimate b in the FS model, we compute the optimal
basestock level S* and the corresponding average selection probability G(S*) in the
F'S-equivalent SD model. Then, we set S™ = S* and g = ¢(S*) in the FS model and
solve (2.49) for b.

Proposition 2.8. The optimal basestock level S* in the FS-equivalent SD model and
the imputed fixed stockout cost b* in the FS model are given by

§* = angmas {1109} (2.50)
( 1 Kl ) * *
N A <@_K2F(S )), S >0,
o (2.51)
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where

I1(S) = G(S) [K30 — K2B ()] — K, S, (2.52)
@-SEEE L ew

with ® (S) = F(S)/F(S) and Ky = h, Ky = h+b, K3 = h + p, since 3 = 1.

Proposition 2.8 gives expressions for S* and the imputed fixed stockout cost l;*,
along with expressions for the average expected profit f[(S) and average selection
probability ¢(.S) in the FS-equivalent SD model. As was mentioned above, expression
(2.51) is derived by solving (2.49) for b, using S™ = S* and ¢ = §(S*). If we reverse
the problem and use b = b* from (2.51) and ¢ = G(S*) from (2.53) to compute S™
from (2.49), the solution may not be unique. Certainly, one solution is S*, but there
may be other solutions too. A sufficient condition for S* to be the unique solution is
that b* satisfies (2.48).

In the method described above, the supplier in the FS-equivalent SD model is
restricted to operate under a basestock policy with a common basestock level for all
ratings, to match the operation of the newsvendor in the FS model. This policy,
besides being useful for estimating l;*, is of interest in itself, because of its simplicity
and ease of implementation. An obvious question is, how well does it perform com-
pared to the optimal policy, which can be found by solving for the maximum average
expected profit over an infinite horizon II given by (2.43), where A(y,) is given by
(2.11) for p = 1. If its optimality gap is small, this would make it attractive for
practical purposes. Moreover, it would justify the adoption of the simpler F'S model,
provided that the supplier uses the imputed fixed cost b*. In this case, a natural
follow-up question is, how sensitive is the average expected profit to errors in b*. We

address this questions in Section 2.7.3
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2.7 Numerical results

In this section, we present numerical results on the bounds of the optimal policy
developed in Section 2.3, on the verification of the optimal policy structure and the
effect of problem parameters on the optimal policy, and on the performance of the

FS-equivalent SD model developed in Section 2.6.

2.7.1 Evaluation of bounds on optimal policy

To numerically evaluate the bounds that we derived in Proposition 2.2 and compare
them against the bounds in Robinson (2016), we tested 400 instances of a problem
with M = 5. The parameters for each instance were generated randomly within the
following ranges: ¢ € [1,5], h,b € [0,1], 8 € [0.85,0.95], p = b/5 + Ap,Ap € [1,5]; r
was computed as p + c¢. The selection probabilities q,,« € A, were generated as the
order statistics of M random variates uniformly distributed in the interval [0.15,0.95].
The buyer demand distribution was a mixture of two normal distributions with means
2.5 and 5.0, variances equal to the means, and weights &5 and &9 = 1 — &,
respectively, where & 5 was randomly generated in the interval [0.77,0.87], i.e., f(w)
was bimodal with mean 6 = £5,52.5 4+ &505.0.

For each instance, we computed V,(0) by numerically solving the dynamic pro-
gramming equation (2.14) using state-space discretization and value iteration. To
implement our numerical scheme, we approximated the two normal distributions with
two Poisson distributions with means 25 and 50, respectively, we discretized the in-
ventory space using step size 1, truncated it in the interval [—90, 80], and scaled it by
a factor of 0.1. We also computed the upper and lower bounds in Robinson (2016), as
well as the bounds in (2.22), for z = 0. For the lower bounds, V. (S, ), we used S, = 0
(Robinson’s lower bound) and S, = S7¥. Our numerical experiments showed that
when the myopic policy was used, the drop in profit was significant, ranging on average
from 27.66% to 40.76%, depending on the initial rating. As was shown in Proposition
2.3, 89 > 8™ suggesting that order-up-to points that are larger than S™ are likely
to produce tighter bounds. With this in mind, we also tested S, > S, for several

order-up-to points Sy, such that S, > S,,a’ > «a. After some experimentation, we
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observed that S, values that are computed by the following heuristic formula yield

reasonably tight bounds:

ghenr — gy (4 Jerod ZHY g (o D) (2.54)
qa+6$ qOH-&ir

According to (2.54), S equals S};” plus a term which is proportional to the per-
cent increase of the selection probability after a good service w.r.t. to the selection
probability in the lowest rating.

To compare the five bounds of V,,(0) discussed above, we computed the percent
difference 100 x (X — V,(0))/X for each bound X. For notational simplicity, we
denote these differences by LBR for X = V.*(0) (lower bound in Robinson (2016)),
LBM for X = VE(S™), LBH for X = VE(Shew) UB for X = VV(S™), and UBR
for X = upper bound in Robinson (2016). Figure 2.3 shows plots of LBR, LBM,
LBH, UB, and UBR, for @ = 2 and 4, for the first 200 instances. In each plot, the

instances are sorted in ascending order of the LBR values, for ease of exposition.

0 Instance 200 0 Instance 200
— LBR LBM — LBH UB — UBR

Figure 2.3: LBR, LBM, LBH, UB, and UBR, for 200 instances.

The plots demonstrate the superiority—in terms of tightness—of UB over UBR
and of LBM over LBR and show that LBH is a much tighter lower bound than LBM
and LBR in almost all instances. Only in a few instances where the optimal policy
is to order up to zero for some «, LBH is lower than LBM and even LBR, because
LBH is constructed by considering a policy where the supplier stocks a multiple of

Sy, which is positive when S} > 0.
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We also computed the mean values of LBR, LBM, LBH, UB, and UBR over all 400
instances. These values show that on average, LBH, UB, and UBR drop significantly
with «, because they are constructed by considering policies that drive a; towards
higher values. Indicatively, the mean LBH value drops from —4.28 for a = 5 to —9.66,
for « = 1. LBR and LBM, on the other hand, are U-shaped in . The mean LBM
value is 3.91% higher than the mean LBR value, for a = 1, but this difference rises
to 22.38% for a = 5.

2.7.2 Verification of optimal policy structure and effect of

problem parameters on optimal policy

To verify the structure of the optimal policy, we numerically solved the dynamic
programming equation (2.14) using state-space discretization and value iteration,
for several problem instances. In each instance, we varied h,b,r, and the selection
probabilities q,, for which we considered the four different profiles shown in Figure

2.4, representing different buyer responses to stockouts.

1
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Figure 2.4: Four different profiles of ¢, vs. a for M = 5.

In all instances, M = 5,8 = 0.9,¢ = 1, and the buyer demand distribution is
a mixture of two normal distributions with means 1.0 and 5.0, variances equal to
the means, and weights &y = 0.7 and &5 = 0.3, respectively, i.e., f(w) is bimodal
with mean ¢ = (0.7)(1.0) + (0.3)(5.0) = 2.2. To implement our numerical scheme,

we approximated the two normal distributions with two Poisson distributions with
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means 10 and 50, respectively, we discretized the inventory space using step size 1,
truncated it in the interval [—90, 80], and scaled it by a factor of 0.1.

Figure 2.5 shows graphs of V,,(z) vs. z,z > 0 for all «, for a representative instance
where h = 0.5,b = 0.4, and r = 3.6. These graphs verify that the value function for
each rating has the shape shown in Figure 2.1, leading to the partitioning of the
inventory space in order-up-to and do-not-order regions, drawn with black and gray
color, respectively. For the intensely convex ¢, profile, rating 4 has two order-up-to
regions, and all other ratings have one such region; for rating 1, this region is (—o0, 0],
so SY = 0. For the convex, linear, and concave g, profiles, ratings 1 and 5 have one
order-up-to region, and ratings 2, 3, and 4 have two such regions. This verifies our
intuition following equation (2.28) that the number of order-up-to regions is bounded

by the number of local maxima of f(w), which, for the instances tested, is 2. The
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Figure 2.5: V,(x) vs. z,x > 0, and optimal order-up-to and do-not-order regions for
h=0.5,b=04,r=23.6, 5=0.9, and § = 2.2, for the four ¢, profiles in Figure 2.4.

graphs also show that although V,(z) varies significantly with «, it is quite flat in
the region between the first and last order-up-to points. This suggests that basestock
policies with rating-dependent basestock levels may perform quite well. In fact, the
policy used to construct V.X(S,,) with S, = S where S"*" is given by (2.54), gives
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reasonably tight bounds, as was discussed in Section 2.7.1. Also, our numerical results
in Section 2.7.3 indicate that using a basestock policy with a common basestock level

for all ratings can be quite efficient.

To explore the effect of problem parameters on the optimal policy, we numerically
solved the dynamic programming equation (2.14) using state-space discretization and
value iteration, for a large number of problem instances, with § = 0.9 and ¢ = 1,
where we varied h, b, v, M, q., and the buyer demand distribution. We run two
sets of experiments. In the first set, we considered the values h € {0.2,0.3,0.4,0.5},
b € {0.7,0.8,0.9}, r € {3.3,34,3.5}, M = 5, and the four profiles of ¢, in Figure
2.4.In the second set, we considered the same values for h, b, and r as in the first set,
and in addition the values M € {2,3,5,7}, for a linear ¢, profile ranging between
¢1 = 0.2 and q;; = 0.9. In both sets of experiments, we considered exponential and
normal buyer demand distributions with mean # = 5.0 and, in the case of the normal
distribution, variance equal to the mean. Note that the coefficient of variation of
the exponential distribution is 1, whereas that of the normal distribution is 1/v/6 =
1/ V5 = 0.447. To implement our numerical scheme, we approximated the exponential
and normal distributions with geometric and Poisson distributions, respectively, with
mean 50, we discretized the inventory space using step size 1, truncated it in the
interval [—550,200] for the geometric case, and [—90,80] for the Poisson case, and
scaled it by a factor of 0.1. In all instances, the optimal policy is basestock with
rating-dependent basestock levels S°. Figure 2.6 shows indicative plots of S vs.
a for b = 08, r = 34, M = 5, and all the h values, ¢, profiles, and demand
distributions tested, for the first set of experiments. The plots show that for the
intensely convex ¢, profile, SO is increasing and concave in «; the concavity breaks
only in two instances where S? = 0, for the exponential distribution. For the other
three ¢, profiles, S° has a skewed inverted U shape as a function of a. As we move
from the intensely convex to the concave g, profile, S? increases for lower values of
« and decreases for higher values, and the skewness of SY shifts from higher to lower
values of «, reflecting the corresponding shift in the elasticity of q,. Note however
that in all instances Sy < S9, verifying Proposition 2.6 (i). These results suggest

that the supplier tends to maintain higher inventory in intermediate ratings, where
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Figure 2.6: S? vs. a for b = 0.8, 7 = 3.4, red M = 5, four values of h, two demand
distributions, and the four ¢, profiles in Figure 2.4.

she has to gain if she meets the demand and lose if she does not, than in the lowest
and highest ratings, where she has nothing to lose and nothing to gain, respectively.
Even under the convex ¢, profile, where ¢, is increasingly more elastic in «, S has
an inverted U shape instead of being increasing in «. If the buyer’s intention is to
create a supplier rating system to improve service, then the probability with which he
selects the supplier must be sharply increasing in «, as is the case with the intensely

convex ¢, profile.

The plots also show that the optimal basestock level for the lowest rating is sig-
nificantly lower for the exponential distribution than it is for the normal distribution
and that this ordering is sharply reversed for larger ratings. This is due to the fact
that the two distributions differ both in shape and variability. In the lowest rating,
under the exponential distribution, the supplier has a good chance of meeting the
demand and increasing her rating even if her basestock level is lower than the mean

demand; under the normal distribution, her basestock level must be closer to the
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mean demand to match this chance. On the other hand, for higher ratings, her risk
of stocking out and being downgraded is higher under the exponential distribution,
than it is under the normal distribution because the former distribution has higher
variability. This results in significantly higher optimal basestock levels for the expo-
nential distribution. In fact, the span of SO values for the exponential distribution
is an order of magnitude larger than that for the normal distribution. These results
suggest that the shape and, most importantly, the variability of the buyer’s demand
dramatically amplifies the effect of the problem parameters on the optimal basestock
levels of the supplier.

As expected, in all instances, S is decreasing in h. Similar results were observed
when we independently varied b and r, except that S is increasing in both b and 7,
although its sensitivity to b is quite low.

Figure 2.7 shows indicative plots of S° vs. ¢, for b = 0.8, r = 3.4, a linear g,
profile, two h values, and all the M values and demand distributions tested, for the

second set of experiments.
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Figure 2.7:  SY vs. q, for b = 0.8, r = 3.4, the linear g, profile, two values of h, four
values of M, and two demand distributions.

The plots show that S° has the same skewed inverted U shape that we saw in the
first set of experiments, for all values of M, except M = 2, where Sy > SY. They
also reconfirm that the variability of the buyer’s demand dramatically amplifies the
effect of the problem parameters on the optimal basestock levels of the supplier. More

importantly, the plots reveal that the higher the value of M, the lower the supplier’s
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SO profile. This is because when M is large, the buyer reacts less erratically to bad
and good service, i.e., with smaller swings in ¢,, allowing the supplier to reduce her
basestock levels. Therefore, from the buyer’s perspective, a more erratic response

induces better service.

2.7.3 Performance evaluation of FS-equivalent SD model

To numerically assess the performance of the FS-equivalent SD model and the sen-
sitivity of the average expected profit to errors in 13*, we tested 60 instances for a
problem with M = 5. In each instance, 5 = 1 and the revenue and cost parameters
were generated randomly as in the numerical study in Section 2.7.1. In all instances,
the buyer demand distribution was exponential with mean # = 3, hence condition
(2.48) immediately holds. All instances were repeated for six different profiles of
(o Vs. «, shown in Figure 2.8, representing different buyer responses to stockouts,
raising the total number of instances tested to 360 (= 60 x 6). Note that profile 0
corresponds to the newsvendor model, where ¢, = ¢,a € A, and hence the demand
is independent of the rating. For each instance, we computed S*, II(S*), and G(S*)
from (2.50), (2.52), and (2.53), respectively, in the FS-equivalent SD model, and the
imputed fixed cost b* in the FS model from (2.51).
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Figure 2.8: Six different profiles of ¢, vs. o for M = 5.

Figure 2.9 shows plots of S*, ¢(S*), I1(5*), and b*, for the 60 instances and six
buyer response profiles tested. The instances in each plot are sorted in ascending
order of the plotted values corresponding to the linear profile (profile 3), for ease of

exposition. Not surprisingly, the rating-dependent buyer response profiles that yield
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the highest IT(S*) values are those with the highest g, values in high ratings (profiles 5,
4, 3,2, and 1, in decreasing order). These same profiles result in the highest ¢(5*) and
smallest S* values. As a result, they yield the smallest imputed fixed cost b*. For all
these profiles, ¢(S*) seems to converge to a value in the interval [0.81,0.86]. In almost
all instances, profile 0 yields the lowest ﬁ(S*) value, because its constant selection
probability is relatively low in high ratings. The few instances where profile 0 results
in a higher f[(S *) value than other profiles do, are characterized by high h/p values.
When h/p is high, it is optimal not to hold inventory, driving the supplier’s rating
downwards. In low ratings, profile 0 has the advantage of a higher selection probability
compared to other profiles. Note that for profile 0, S* = 0 in more than one-third of
the instances. In these instances, from (2.50), b* € [0, (K1 /g1 — K3)/f(0)]. In Figure
2.9, we plotted the upper bound of this interval.
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Figure 2.9: TI(S*), S*, §(5*), and b*, for the six ¢, profiles in Figure 2.6.

To assess the performance of the FS-equivalent SD policy, we compared fI(S*)
against the maximum expected average profit under the optimal policy in the SD
model, II, which was computed by numerically solving the corresponding dynamic

programming equation. To examine the sensitivity of the average expected profit to



2.7. NUMERICAL RESULTS o1

errors in l;*, we computed the optimal basestock level in the F'S model for values of
b # b* from (2.49), denoted by S™(b), after substituting ¢ = G(S™ (b)) from (2.53).
Then, we substituted Smy(l;) in (2.52) to compute the resulting average expected
profit in the FS-equivalent SD model, II(S™(b)). The resulting percent loss in the

~ ~

average expected profit is denoted by ATI(D), i.e., AIL(b) = 100 x [IT — II(S™(b))]/I1.

Figure 2.10 (left) shows AII(b), for b = mb*, for different multiplication factors m
between 0 and 4, for profile 3, for the 60 instances. Figure 2.10 (right) shows AII(b*)
for all profiles. The instances in both plots are sorted in ascending order of Af[(l;*)

for the linear profile (profile 3), for ease of exposition.
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Figure 2.10: Left: Aﬁ(l;), for b = mb*,m = 0,0.5,1,2, 4, for go profile 3 in Figure
2.10. Right: AII(b*), for ¢, profiles 1-5 in Figure 2.10.

From Figure 2.10 (left), we see that the smallest loss (less than 2% on average) is
obtained when the supplier uses the imputed fixed cost, i.e., b="b* Ifh= 23*, the
percent loss is on average approximately 7%, indicating that the average expected
profit is not sensitive to overestimations of the fixed cost. If b = 0.56*, however,
the percent loss rises to approximately 34% on average, because in one-third of the
instances, the supplier ends up operating under a make-to-order policy, when such
a policy may be far from optimal. Similar results hold for the other buyer response
profiles. Figure 2.10 (right) indicates that the profiles that yielded the highest T1(S*)

values (see Figure 2.9) more or less have the highest AII(b*) values.
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2.8 Discussion and future research

In this chapter, we developed a multiperiod model of a supplier selling items to a
buyer who rates the supplier based on the history of her service, measured in terms
of in-stock/out-of-stock incidents. There are several possible directions for future
work. Our results were derived for continuous buyer demand (except for the case
of deterministic demand), but most of them can potentially be extended to discrete
demand.

We assume that M and q,,« € A, are known. In a real application, these param-
eters must be estimated from longitudinal data. If the buyer’s rating of the supplier
is real and observable by the supplier, then M is known, and ¢, can be estimated
as the number of periods that the buyer selects the supplier when her rating is «
over the number of periods that the supplier’s rating is a. If the rating is an imag-
inary construct for capturing the buyer’s goodwill, then the only information that
the supplier observes in each period is whether the buyer selects her or not and if he
does, whether she meets the demand or not. In this case, the problem of choosing
the appropriate M is a model order determination problem, for which there exist es-
tablished statistical (e.g., likelihood, Bayesian), information-theoretic (e.g., AIC and
BIC), and machine learning (e.g., cross-validation) solution methods Singer, Helic,
Taraghi and Strohmaier (2014).

We assume a single buyer with multiple satisfaction levels reflected by the ratings.
A more general model can include multiple non-homogeneous buyers with different
demand distributions and selection probabilities, expressing diversity in buyer needs
and responses to service. In such a setting, the supplier must decide not only how
much to order but how to ration inventory in case of excess demand. Judging from
the work of Adelman and Mersereau (2013), who addressed the rationing but not
the ordering issue in a similar setting where goodwill is modeled as an exponential

smoothing of utilities derived from past fill rates, this is a very challenging problem.



Chapter 3

Dynamic Supplier Competition
and Cooperation for Buyer Loyalty

on Service

3.1 Introduction

In this chapter, we focus on the switching behavior of a buyer from one supplier
to another following poor service and its implication on the suppliers’ competitive
inventory policy, in a B2B setting. In Section 3.2, we formulate the model of the buyer
and the two suppliers. In Section 3.3, we discuss the myopic policy of the suppliers
and characterize their long-run optimal policy. In Section 3.4, we derive properties
of their best response functions under competition and discuss their equilibria. In
Section 3.5, we derive properties of the optimal joint inventory policy of the suppliers
when they cooperate, and we estimate the backorder penalty rate that the buyer must
charge the suppliers to recover the fill rate that she enjoys under competition. In
Section 3.6, we apply the results to the case where the buyer demand is exponentially
distributed, and we illustrate the results with a numerical example to investigate the
effect of the suppliers’ parameters on the optimal outcome. Finally, in Section 3.7, we
discuss the extension of our model to multiple suppliers. We summarize our findings

in Section 3.8 where we propose directions for future work. Supplemental material

23
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for this chapter, including proofs, can be found in Appendix B.

3.2 Model formulation

Two suppliers sell the same product to a buyer in consecutive periods. The buyer
arranges the suppliers in a rank order list based on the last service she received, which
is either satisfactory or unsatisfactory, depending on whether her demand was fully
met or not. Throughout this paper, we reserve index ¢ to denote one supplier and j
to denote the other, i.e., j # i; therefore, either (i,7) = (1,2) or (i,7) = (2,1).

At the beginning of period ¢, each supplier 7 orders a non—negative quantity ahead
of demand, based on his inventory level, x;, € R, and his placement or ranking in the
buyer’s list, a;; € {1,2}, where 1 indicates the top of the list or high ranking and 2
indicates the bottom or low ranking. The order arrives before the end of the period,
raising the supplier’s inventory level to y;; > x; ;.

At the end of the period, the buyer selects the high-ranking supplier and demands
from him a random quantity w;. If the supplier meets all the demand at once, he is
kept at the top of the list and carries any leftover inventory to the next period. If he
fails to meet all the demand at once, the buyer backorders the unmet demand with
him and moves him to the bottom of the list, thereby bringing his competitor to the
top. In other words, the buyer rewards her suppliers with loyalty if they serve her
well but punishes them by switching at the first service failure. We refer to the streak
of periods during which the buyer selects the same supplier before she switches to the
other supplier as a supply run.

The demands {wy,t = 0,1,...} are based on the buyer’s needs and are indepen-
dent of the suppliers’ past service. We assume that they are i.i.d. continuous random
variables with p.d.f., c¢.d.f., and mean, f(-), F'(-), and 0, respectively. Based on the
above assumptions, the demand seen by supplier 7 in period ¢ is wil(q,,—1}, Where
11y is the indicator function.

The idea that a stockout incident has a fixed adverse impact on the standing of the
supplier who runs out of stock, irrespective of the shortage quantity or time, has been

addressed in the literature for the most part by considering a fixed cost per stockout
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occasion or a minimum type-I service level constraint. One of the interpretations of
the fixed cost is that it is a penalty for the buyer’s loss of goodwill and hence future
demand, due to the stockout Cetinkaya and Parlar (1998). Yet, almost always, it is
assumed that the demand is unaffected by the stockout. In our model, the effect of
a stockout on the supplier’s demand is the direct consequence of the buyer’s carrot-
and-stick selection policy which signals the buyer’s discontent about the stockout
and stimulates competition between the suppliers. Moreover, we assume that the
suppliers know their ranking before they order so that they know what to expect;

hence, we are in a full information setting.

Based on the above assumptions, supplier ¢’s inventory level and ranking are

updated as follows:

Tit+1 = Yit — wtl{ai,tzl}a (3-1)

Qi1 = Qg+ Lo, =1y <) — ai=2 <wi}- (3.2)

In each period, supplier ¢ incurs an acquisition cost ¢; per item ordered and receives
a revenue (price) r; per item sold. The quantity sold is min(y;, w14, ,—13). We also
assume that he incurs an inventory cost of h; per item in inventory and a backorder
cost of b; per item short at the end of the period. Typically, b; is a transaction or some
other friction cost for managing the backorder. To ensure that the supplier can be
profitable even with backorders, we also assume that p; > b;, where p; is the per-unit

profit margin defined as p; = r; — ¢;.

The profit of supplier i in period t is r;[(2;,)” + min(yi, wilfa,,—13)] — ci(Yir —
Tip) = hi(Yir — wilfa, ,—13) " —bi(wel{a, =1} —¥ie)t, where we use the notation: ()" =
max(z,0) and (z)” = (—x)",z € R. After rolling the z;, terms backwards for one
period, similarly to Liberopoulos and Deligiannis (2022), the profit in period ¢ can be

recast as the following function of ¥, ;:

9i(Qigs Yigs W) = Piwilia, =1y — Pi(Yiy — wilia,,=13) " = bi(wil{a, =13 — vie) " (3.3)

Given the suppliers’ decisions y; 4, y;+ ¢t = 0,1,..., the expected average profit of
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supplier 7 is

I (Yi0 Y500 Yist, Yj1y - - -) = 711_{1010 TE

T-1
Zgi(ai,ta Yit wt)] ,

t=0

where the dependence of II; on y; stems from the dependence of «; ;41 on y;; from

(3.2).

3.3 The suppliers’ optimal policy and payoff

Before analyzing the model of the two suppliers, it is worth noting that in the ab-
sence of supplier j, supplier ¢ will behave as a single multi-period newsvendor with
backorders, whose optimal ordering policy is a basestock policy with basestock level
s;, and whose period profit is g;(1, s;,w). His expected average profit, as a function

of s;, denoted by G;(s;) = Elg;(1, s;,w)], and its first two derivatives are given by

Gi(si)) = pifl — NE [(si —w)] = biE [(w—s;)"], (3.4)
Gl(s:) = —hiF(si) + biF(s1), (3.5)
Gi(s) = —(hi +b;) f(s:). (3.6)

From (3.6), G;(s;) is concave, so the optimal basestock level of the newsvendor,
denoted by s!", is the solution of the first-order condition, G'(s;) = 0, given by the

[

well-known critical fractile formula,

b.
m_ pt 2 3.7
= () (37)

We refer to s!" as the myopic basestock level of supplier 7 because it maximizes the
single-period expected average profit G;(s;). From (3.4) and (3.5), G;(0) = (p;—b;)0 >
0, G5(0) = b; > 0, and lim,, , G;(s;) = —oo, implying that G;(s;) crosses zero and
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becomes negative at a finite point, denoted by s satisfying
Gi(sM) =0, (3.8)

such that G(s;) > 0,s; < sM, and G(s;) < 0,s; > sM. This means that for basestock
levels larger than s, the newsvendor incurs losses.

Going back to the dual-sourcing model, the structure of the optimal policy for
each supplier and the resulting expected average profit over an infinite horizon is

given by the following proposition.

Theorem 3.1. The optimal ordering policy of supplier i is a ranking-dependent base-

stock policy, denoted by yi (o), given by
Y (2) =0 and y; (1) = s; > 0. (3.9)

Under this policy, the expected average profit (payoff) of supplier i, as a function of

s; and s;, denoted by I1;(s;, s;), is
Hi(Si,Sj) = Wi(Si,Sj)Gi(SZ'), (310)

where
(3.11)

and G;(s;) is given by (3.4).

We refer to s; and s; as the active basestock levels of supplier ¢ and j, respectively,
because the suppliers use them when they are “active”, i.e., when they are at the top
of the buyer’s list, enjoying her loyalty. Figure 3.1 shows a sample trajectory of the
suppliers’ inventory levels under the optimal ordering policy. The buyer switches
suppliers after every supply run. If we join together the segments of supplier i’s
inventory trajectory when «; = 1, i.e., during his supply runs where he is active,
ignoring the segments when «; = 2, the resulting trajectory coincides with that of a
multi-period newsvendor with backorders who in every period orders up to s;. His

expected average profit in this case is G;(s;) given by (3.4). In the remaining segments
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Figure 3.1: Sample trajectory of the suppliers’ inventory levels.

of the trajectory when «; = 2, i.e., during supplier j’s runs, supplier ¢ is inactive and
has zero inventory and zero profits. Therefore, his overall payoff is G;(s;) weighted
by the fraction of time that ; = 1, denoted by ;(s;, s;) and given by (3.11). This

fraction represents the expected average demand share of supplier i.

The expected average fill rate seen by the buyer is denoted by ¢(s;, s;) and is given
by q(si,s;) = mi(si, 8;)Fi(si) + mj(si, 85)F;(s;). From (3.11), this can be written as

2F(s;)F(s:)

E(
F(s;)+ F(s;) (312)

Q(Siasj) =1-

3.4 Supplier competition

If the suppliers compete for the buyer’s patronage, the problem of each supplier i

is to choose an active basestock level s; that maximizes II,(s;, s;) defined in (3.10).
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From (3.10) and (3.11), the first partial derivative of II;(s;, s;) with respect to s; is

Ol (54, 55) F(s;)
== — — 2¢i SZ‘,SJ' s 3.13
ds; <F(Sj) + F(sl)) ( ) ( )

where ¢;(s;, s;) and its first partial derivatives are given by

Gil(si,85) = (F(s5) + F(s:)) Gi(si) + f(s:)Gi(s:), (3.14)
%;’SJ) = (F(s;) + F(s:)) G (s:) + ['(5:)Gi(ss), (3.15)
000 3i) sy cis. (3.16)

3.4.1 Best response function

From (3.10), the optimal value of s; that maximizes the payoff of supplier ¢, IL;(s;, s;),
depends on s;. Let s7(s;) denote the optimal active basestock level of supplier ¢ given
s;, henceforth referred to as the best response (function) of supplier i. The following

proposition provides upper and lower bounds on s}(s;).

Proposition 3.1. The best response s}(s;) is bounded as follows:

0< s <si(s;) <sM, s;€[0,00), (3.17)

7

where s and sM satisfy (3.7) and (3.8).

Proposition 3.1 states that the best response of supplier ¢ is higher than his myopic
basestock level s*. By setting s; above s, the supplier compromises part of his
expected myopic profit G(s;) to extend his stay at the top of the buyer’s list, thus

increasing his long-term average demand share ,(s;, s;) and the resulting profits.

m
(]

This means that using basestock level s, although myopically optimal, will lead to

payoff losses in the long run.

Given that O1I,(s;, s;)/0s; > 0, for 0 < 's; < s, and 01l;(s;, s;)/0s; < 0, for s; >

s the first-order condition 9I1;(s;, s;)/0s; = 0 has at least one solution in (s, sM).

i 924
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The solution that corresponds to the global maximizer of II;(s;, s;) is the best response
si(sj). From (3.4), (3.5), and (3.13), note that all the solutions including s}(s;)
depend on F'(-), h;, and b;, as does the myopic basestock level s7*. In addition, they
depend on p; and s;. The bounds on s(s;) given by (3.17), however, are independent
of s;. The following proposition provides a condition under which the best response

s7(s;j) is unique.
Theorem 3.2. If the following condition holds:

<0, s;€ (s s, 55 €0,00), (3.18)

i 091

0¢i(si,5;)
&si

the best response s;(s;) is

(1) @ global maximizer of the payoff 11;(s;, s;) uniquely satisfying OI1;(s;, s;)/0s; = 0,
which reduces to
¢i(8;‘k<sj)> Sj) =0, (319>

(it) increasing in s;, and its derivative with respect to s; is

Osi(s;) _ 09i(si(s;). 5;)/0s;

ds;  0¢i(s:(s)),5;)/0s: (3.20)

(111) increasing in 0, p;, b;, and decreasing in h;.

Theorem 3.2 (i) states that under condition (3.18), II,(s;, s;) has a unique maxi-
mum, guaranteeing the uniqueness of the best response. Condition (3.18) is very mild
and is easily satisfied. From (3.15), the first term in 0¢;(s;, s;)/0s; involving G7(s;)
is negative by (3.6). If the demand density f(w) is non—increasing, as is the case with
the exponential distribution, then the second term is non—positive, and the condition
is met.

A more careful look at (3.15) reveals that in order for the second term to be
non—positive, f(s;) does not have to be decreasing for all s; > 0 but only for s; €
(s, sM), because we know from (3.17) that s}(s;) € (s7,sM). For example, if f(w)

is unimodal with mode v (i.e., v is the maximizer of f(w), above which f(w) is
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decreasing) and s" > v, then f'(s;) < 0,s; > s". The condition s > v holds
for many unimodal distributions, for reasonable values of the newsvendor critical
fractile b;/(h; 4+ b;). Indicatively, if b;/(h; 4+ b;) > 0.5, then s* > 11/, where fi1/
denotes the median of f(w). In this case, if j112 > v, then s7* > v. The inequality
12 > v is satisfied for many common distributions with non—negative skewness, such
as the Normal, Lognormal, Weibull, Gamma, and other distributions. For instance,
if w ~ Normal(f,0?), then pijpg = v =0 Ifw ~ Logromal(y, 0%), then P12 =
exp(p) > exp(p — 0?) = v. If w ~ Weibull(A, m), with m < 1/(1 — In2) & 3.2589,
then 1o = A(In2)Y™ > A[(m — 1)/m]"/™ = v. If w ~ Gamma(m, §), with m > 1,
then 12 € ((m —1/3)n,m&) > (m — 1)§ = v Chen and Rubin (1986).

Even if f(w) is increasing in all or parts of the interval (s7, sM), condition (3.18)

will still hold if

G (si)
G(si)

, s € (7, sM), 55 €[0,00), (3.21)

fl(si) < = (F(sj) + F(si))
where the right-hand side of the above inequality is positive.

Finally, note that (3.18) is a sufficient and not a necessary condition, that is,
s(sj) may be unique even if (3.18) does not hold. More specifically, (3.18) implies

that ¢;(s;,s;) is strictly decreasing in (s, sM), which guarantees that it will cross

i 921
zero at exactly one point. It is possible, however, that ¢;(s;, s;) crosses zero at exactly
one point without being decreasing everywhere in (s, sM). In this case, s}(s;) will

091

still be unique.

If the first-order condition 0II;(s;, s;)/0s; = 0 does not have a unique solution,
then each solution s}(s;) is either a local extremum or an inflection point. In this
case, one can always evaluate II;(s;, s;) at each solution to determine the maximizer

of the payoft.

Theorem 3.2 (ii) and (iii) provide important monotonicity properties of s}(s;).
Property (iii) is the same as the respective property in the model of a single multi-

period newsvendor with backorders. Property (i) states that sf(s;) is increasing in
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s; and can be expressed as

Sj a >|<

si(s) = si0)+ [ E Wy, (3:22)
0 9y

where s7(0) is the solution of equation (3.14), for s; = 0, and Js}(y)/0dy is given by

(3.20) for s; = y. This implies that if supplier j increases his active basestock level,

supplier ¢ will follow suit to mitigate his loss of demand share.

3.4.2 Nash equilibrium

From the previous discussion, competition pushes both suppliers to move away from
their myopic basestock levels in an escalating inventory contest, benefiting the buyer.

Does this rivalry ever settle? The following theorem suggests that it does.
Theorem 3.3. If condition (3.18) holds fori = 1,2, then

(i) There exists at least one pure-strategy Nash equilibrium (s§, s5) satisfying (3.19)
fori=1,2.

(i) Each Nash equilibrium (s7,s$) is increasing in 0,p;, pj, b, b; and decreasing in
hi, ;.

(111) If the following condition holds:

0s; (s,
Sz (8]) < 1’ Sj c (Sm,SM), Z: 1’2’ (323)
8Sj

the Nash equilibrium is unique.

Figure 3.2 shows indicative graphs of the best response functions of the two suppli-
ers under condition (3.18) which guarantees their uniqueness. As both graphs show,
the two functions cross each other at least at one point because both are increasing

and bounded from above and below. The crossing points are the Nash equilibria

that always belong in region B, i.e., s¢ € (s, sM), i = 1,2. In graph (b), condition

i 920

(3.23) holds, and therefore the Nash equilibrium is unique. Theorem 3.3 (ii) implies
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Figure 3.2: Best response functions of the two suppliers and Nash equilibrium (s, sj)
that if one of supplier j’s parameter values changes, not only does he respond by
changing his active basestock level, but supplier ¢ also changes his active basestock
level in response to j’s response. Condition (3.23) is necessary and sufficient for the
best response to being a contraction mapping, implying the uniqueness of the Nash
equilibrium.

The fact that the suppliers’ active basestock levels at equilibrium are higher than
their myopic levels implies that the buyer’s carrot-and-stick behavior is successful in
raising the fill rate that she enjoys under supplier competition. The reduction in the
frequency of stockouts resulting from the increase in the basestock levels limits the
role of the backorder cost rates b; for the suppliers.

If the suppliers are symmetric (identical), i.e., p; = p, h; = h, b; = b, for i = 1,2,
implying that G;(y) = G(y), for i = 1,2, the Nash equilibrium is unique and is given
by the following proposition.

Proposition 3.2. If the suppliers are symmetric and condition (3.18) holds, then

(1) There exists at least one symmetric pure-strategy Nash equilibrium (s¢, s¢), where

s¢ satisfies

F(s¢)  G(s)
The resulting payoff of each supplier i is

[(s) __2G() 50

I1;(s%, s°) = ,1=1,2. (3.25)
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(i) There exist no asymmetric pure-strateqy Nash equilibria.
(111) If the following condition holds:

95(s)

s <0, se€(s™sM), (3.26)

where qg(s) = ¢(s,s), then the symmetric equilibrium is unique.

Note that if the suppliers are symmetric, condition (3.23) is not needed for the
uniqueness of the Nash equilibrium, because the first-order conditions for the two
suppliers reduce to one equation (because of symmetry) which has a unique solution,
under (3.18).

3.5 Supplier cooperation

In the previous section, we saw that the non-cooperative game of the suppliers forces
them to increase their active basestock levels above their myopic levels, compromising
their profits. Now, suppose that the suppliers decide to team up to reduce their
total inventory costs, perhaps as a result of consolidation (merger or acquisition)
or an agreement to split the benefits from this reduction. What is the optimal joint
inventory policy and gain of the suppliers in this case, and what is the adverse impact
of their cooperation on the buyer’s fill rate? Moreover, what can the buyer do to
recover the fill rate that she enjoyed under competition? In this section, we address

these questions.

3.5.1 The suppliers’ gain

If the suppliers team up, the optimal ordering policy of each supplier in the team
has the same structure as that under competition, given by Theorem 3.1. Moreover,
the team’s payoff is the sum of the individual payoffs of the suppliers. The problem
for the team is to choose an active basestock level pair (s;,s;) that maximizes the

team’s payoff, denoted by Il(s;, s;), by carefully balancing the expected period profits
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and the long-term average demand share of each supplier defined in (3.10). More

specifically, I1(s;, s;) and its first partial derivative with respect to s; are

(s, 55) = Wi(si, 55) + (i, 85) = milsi, 55)Gil(si) + 75(8i, 85)G(85)- (3.27)

I(si, ;) F(s))
= — = — Qwi SiySj5), 3.28
Jsi (F(sj) + F(sl)) ( ) ( )

where 1;(s;, s;) and its first partial derivatives are given by

Vilsis5) = Gi(sis55) = F(0)Gi(55); (3.29)
Oi(si,55)  Odi(sq,55) )

0s; T 9s; — ['(s1)G;(s5), (3.30)

%;;SJ) = _f(sj)G;(Si) — f(Si)G;(Sj), (3.31)

and where ¢;(s;, sj), 0¢i(si,s;)/0s;, and 0¢;(s;, s;)/0s; are given by (3.14)—(3.16).
Under competition, we saw that the Nash equilibrium (sf, s%) always resides in the
region B of Figure 3.2, that is, the active basestock levels at equilibrium are larger
than the myopic basestock levels. Does this also hold for the optimal active basestock
level pair under cooperation, denoted by (s¢, sg)? The following theorem answers this

question.

Theorem 3.4. The optimal active basestock level pair (s5, sj) and the resulting maz-

imum team payoff T1(sf, s5) satisfy
(i) If Gi(s]") = G;(sT"), then

s =s" i=1,2, (3.32)
I(s7, 85) = 1I(s]", s7") = Gi(s{") = G;(s]"). (3.33)

(i) If Gi(s*) < G;(sT"), then
s; € 10,s") and s§ € (s, 537, (3.34)

Gi(si") <TI(si", s7") < T(s{,s5) < Gj(s5). (3.35)

i 097 1797
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In both cases:
II(s7, s5) > TI(s{, s5), (3.36)

17°]

where T1(sf, s§) = L;(s7, s5) + [1;(s7, 55) is the sum of the payoffs of the two suppliers

1777
at equilibrium under competition.

Expressions (3.32) and (3.34) state that under cooperation, the optimal active
basestock level of one supplier is at or below his myopic basestock level, and therefore
below his Nash equilibrium, whereas the optimal active basestock level of the other
supplier is at or above his myopic basestock level. Expression (3.36) states that in
both cases, the team payoff under cooperation is greater than the sum of the payoffs
at equilibrium under competition.

If Gi(s]") = G;(s]"), both suppliers use their myopic basestock levels, reaping
the maximum possible profits for the team. A special case is when the suppliers are

symmetric, given by the following corollary.

Corollary 3.1. If the suppliers are symmetric, the optimal active basestock levels

and the resulting team payoff under cooperation are:
s¢=38"i=1,2, (3.37)

II(s™,s™) = G(s™). (3.38)

Corollary 3.1 implies that the two cooperating symmetric suppliers behave as one
newsvendor in the buyer’s eyes.

If Gi(s}") < Gj(s]'), supplier i has a smaller myopic profit than supplier j, so he
uses an active basestock level that is below his myopic basestock level, ceding a part
of his demand share to the more profitable supplier j, who uses an active basestock
level which is above his myopic basestock level. Therefore, the suppliers use active
basestock levels that reside in the region A of Figure 3.2. If Gi(s") > Gj(s}),
the reverse is true, and the suppliers use active basestock levels in region D. In both
cases, both suppliers sacrifice some of their myopic profits to optimally rebalance their
demand shares by transferring some of the buyer’s business from the less profitable

to the more profitable supplier.
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To visualize the behavior of (s, sg), suppose that h; = I;¢; and b; = J;¢;, where I;

and J; are some proportionality constants. Then, from (3.4), G;(s;) is decreasing in

c; and so is the ratio G;(s]")/G;(s]"), while from (3.7), si" is constant in ¢; because

b;/(h; + b;) = J;/(I; + J;) is independent of ¢;. Figure 3.3 shows a curve tracing the

position of (s§,s$) as a function of ¢;. The red part of the curve represents the set

SjA
M
Sj
A B
C C
- (si»si)
Sj
C D
>
i SLM Si

Figure 3.3: Position of the optimal active basestock level pair when the two suppliers
cooperate.

of points (sf, s§) that corresponds to large values of ¢; such that Gi(s]") < G;(sT").
The blue part represents the set of points that correspond to small values of ¢; such
that G;(s7") > G;(s7"). If Gi(s]") is too small or too big, then s{ or s§ becomes zero,
respectively.

A question that arises naturally is, when does the less profitable supplier set his
active basestock level at zero, thereby ceding almost all his demand share to the more
profitable supplier? We say “almost,” because even if the less profitable supplier sets
his active basestock level at zero, the buyer will still return to him occasionally for
a supply run of just one period whenever the more profitable supplier fails her. A
follow-up question is, how is the optimal active basestock level of the more profitable
supplier compared to his active basestock level at equilibrium under competition?
The following theorem answers these questions under conditions that guarantee the

uniqueness of the optimal active basestock level pair.

Theorem 3.5. Assuming without loss of generality that Gi(s*) < G;(sT'), if the
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following conditions hold:

i (54, 55)

<0, k=1i,4, s; €[0,8"), s; € (s, s, (3.39)
&sk

J

the optimal active basestock level pair (s¢, sj) s a global maximizer of the team payoff

(s;, ;) satisfying

(i) If1:(0,s§) > 0, then s{ > 0 and the pair (s7, s5) uniquely satisfies OlL(s;, s;) /sy =

0, k=1,7, which reduces to
Ur(si,s5) =0, k=1i,j, (3.40)

implying that
fils9)G5(s5) + f(s5)Gi(s7) = 0. (3.41)

Otherwise, s = 0 and s§ uniquely satisfies O1(0, s;)/0s; = 0, which reduces to

;(0,55) = 0. (3.42)

(ii) If condition (3.18) holds for both suppliers, then s < s5.

Theorem 3.5 (i) provides a condition under which the active basestock level of the
less profitable supplier i is strictly positive. If this condition holds, (3.41) implies that
the relative values of s{ and s} depend only on h;, b;, and f, even though from (3.40)
their individual values depend on all problem parameters. If this condition does not
hold, supplier i sets his active basestock level at zero, ceding almost all his business
to the more profitable supplier j.

A question that arises, in this case, is, how high does s} become to curtail the
frequency of the buyer’s occasional visits to supplier . Does it ever increase above
the Nash equilibrium s57? Theorem 3.5 (ii) implies that it does not if the conditions
ensuring the existence of a Nash equilibrium hold. Therefore, under these conditions,
the optimal active basestock levels of both suppliers under cooperation are smaller

than their respective active basestock levels at Nash equilibrium.
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Finally, as mentioned earlier, from (3.36), the team payoff under cooperation is
greater than the sum of the payoffs at equilibrium. The loss in efficiency for the
suppliers, if they compete instead of cooperating, can be measured by the ratio of
their optimal team payoff under cooperation to their worst total payoff at equilibrium

under competition, known as the price of anarchy (PoA), i.e.,

II(s¢, s9)

19 7]

PoA = — .
minge o) {I1(s, s5) }

(3.43)

3.5.2 The buyer’s perspective

We note that PoA defined in (3.43) usually refers to the degradation of social wel-
fare due to the selfish behavior of agents, whereas in our case, it is the suppliers’
profits that are at stake. Moreover, the loss in efficiency for the suppliers is a gain
in service quality for the buyer. The buyer’s carrot-and-stick behavior is precisely
meant to raise the fill rate that she enjoys by stimulating competition, and it does
so successfully. If the tables are turned and the suppliers decide to cooperate instead
of competing, the buyer loses the high—fill rate advantage that her behavior incites.
What counteroffensive action can she take in this case to gain back that advantage?
One plausible countermeasure for the buyer is to charge the suppliers an extra back-
order penalty rate—different from the regular backorder cost rate b; that we have
been using thus far—to force them to increase their active basestock levels. The
question then is, what should the value of this penalty cost be to make the suppliers
raise their active basestock levels to their equilibrium values? We call this value the
adjustment backorder penalty rate. To compute this penalty rate, we assume that
the suppliers are symmetric for mathematical simplification. Moreover, we assume
that their common regular backorder cost rate b is zero. As mentioned earlier, under
supplier competition, the role of b is weakened anyway because the increase in the
suppliers” active basestock levels reduces the frequency of stockouts. As the suppliers
are symmetric, the buyer charges them a common backorder penalty rate denoted by
be.

If the suppliers compete, from Proposition (3.2), there exists a unique symmetric



70 CHAPTER 3. COMPETITION/COOPERATION FOR BUYER DEMAND

Nash equilibrium s¢ satisfying (3.24). After substituting G(s¢) and G’(s¢) from (3.4)
and (3.5), respectively, dividing them by h, and setting b = 0, expression (3.24)
becomes

F(s) ((p/h)0 — E[(s¢ — w)*]) = 2F(s°) F(s°). (3.44)

From the above expression, s¢ depends on the buyer’s distribution and the ratio
p/h. If h = Ic, where I is the interest rate, then p/h = [(r — ¢)/c]/1, i.e., p/h is the
ratio of the margin rate to the interest rate. If the suppliers decide to cooperate, then
from (3.37), they set their symmetric active basestock levels at s™, where s™ is given
by (3.7) after replacing b with 0°. So, if the buyer wants to recover the fill rate that
she can enjoy under supplier competition, she must set 0¢ so that s” = s¢, where s°
satisfies (3.44), i.e.,

F(s%)

b= h= % (3.45)

3.6 Exponentially distributed demand

To better comprehend the results developed in the previous sections and their im-
plications, we apply them to the case where the buyer’s demand is exponentially
distributed. The exponential distribution has been used in many newsvendor model
applications over the years Mahajan and van Ryzin (2001); Liyanage and Shanthiku-
mar (2005); Rossi, Prestwich, Tarim and Hnich (2014); Ulkii and Giirler (2018); Siegel
and Wagner (2021). Besides, the mathematical tractability that it offers, it has been
recognized to effectively describe highly variable demand Lau (1997); Gallego, Katir-
cioglu and Ramachandran (2007).

3.6.1 Analytical results

If the buyer’s demand is exponentially distributed with rate A, then
flw) =Xe™, Fw)=e*, w>0,A>0, and § = 1/\. (3.46)

To facilitate our analysis, we use the Lambert W function, defined as the inverse
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function of we®, ie., W(z) = w < z = we®. The Lambert W function is often
used to solve equations in which the unknown appears both outside and inside an
exponential function or a logarithm. It has the following properties which are useful

for our analysis:
(i) W (z) is increasing and concave in (—1/e, 00) and positive in (0, 0o).

(i) W(we®) = w.

W(z)

(iii) W'(z) = W)

for z ¢ {0, —1/e}.

To simplify notation, we also define the following ratios:

;== 3.47
= (3.47)
b; + h;

As mentioned in the previous section, if h; = I;c;, where I; is the interest rate
used by supplier 7, then p; represents the margin-to-interest rate ratio of supplier 7.
Using this notation, if f(w) is given by (3.46), we can obtain exact expressions for
Gi(si), Gi(si), sT, sM, Gi(s™), Wi(si, 8;), di(siy5;), and ¥;(s;, s;). These expressions
are given in Appendix B.

As mentioned in the discussion following Theorem 3.2, if f(w) is non-increasing,
condition (3.18) holds, guarantying the uniqueness and monotonicity of the best re-
sponse. In the case of the exponential distribution, the best response is given in closed

form in the following proposition.
Proposition 3.3. If f(w) is given by (3.46), the best response s;(s;) is
(1) unique and given by

pi + Bie % — W (epﬁﬁieﬂsj*/\%)

si(s;) = 5 , 85 €10,00), (3.49)
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(i1) bounded as follows:

s < s5(0) < si(sy) < lim si(s;) < s}, (3.50)
5 —>00
where s(0) = [p; + B — W(ePTP)] /X, limy, o0 87 (s;) = pi/A, and s and s}
are given by (B.6) and (B.10), respectively, in Appendiz B.

Expression (3.49) implies that s}(s;) is increasing in p; and §; which also verifies
Theorem 3.2 (iii). Moreover, (3.50) provides tighter lower and upper bounds than s}
and sM | respectively.

From Theorem (3.3) (i), condition (3.18) also implies the existence of at least
one pure-strategy Nash equilibrium. The following proposition states that the Nash

equilibrium is unique and provides the equations to compute it.

Proposition 3.4. If f(w) is given by (3.46), there exists a unique pure-strateqy Nash

equilibrium (s§, s5) satisfying

1 6)‘82i _61
C=—In|——  =1,2. 3.51

The proof is based on showing that condition (3.23) holds for the exponential case.
From (3.51), the active basestock level of supplier j at equilibrium is increasing and
concave in s¢ and decreasing in p;, ;. The system of equations given by (3.51) cannot
be solved analytically. However, for the symmetric case, we can obtain a closed-form

solution which is given by the following corollary.

Corollary 3.2. If the suppliers are symmetric and f(w) is given by (3.46), there

: . oo e e S o e
exists a unique pure-strateqy Nash equilibrium (s¢, sj) which is symmetric, i.e., s; =

s¢

— € e 4 y .
¢ = s° where s° is given by:

p—1+W(Be™?)
: .

s¢ =

(3.52)
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The resulting payoff of each supplier i is

h(A=W(Be™") | o (3.53)

Hi(sev Se) = )\ 9 )

The proof follows from Proposition 3.2. Equation (3.52) can also be derived from
(3.51) after dropping the supplier indexes and solving for s°.

The following result regards the cooperation of the suppliers.

Proposition 3.5. If f(w) is given by (3.46) and assuming without loss of generality
that

Ap > h;In(5;) — hi In(5;), (3.54)
where Ap = p; — p; = hjp; — hip;, then the optimal active basestock level pair (s5, s‘;)
satisfies:

If Ap < hjIn(K), where K = §; + (8; — 1)hi/hy, then s € (0,s7"), s € (s7",5)7)

and the pair (sf,s5) uniquely satisfies

¢ ._ Ap
hij — hisi = T, (355)
hie)\sf + hj@AS; = hlﬁl + hjﬁj. (356)
Otherwise: -
_ p
si =0, and s§= Mf@), (3.57)

where p= Ap/h; — K.

Proposition (3.5) states that if the difference in the margins of the suppliers,
Ap = pj —p;, is larger than the difference h; In(8;) — h; In(53;), then G;i(s]") < G4(s7).
This means that supplier 7 is more profitable than supplier i. So, when the suppliers
team up, supplier j uses a basestock level that is above his myopic basestock level,
while supplier 7 uses a level that is below his myopic basestock level, ceding a part of
his demand share to supplier j. Therefore, the suppliers use active basestock levels
in region A of the (s;, s;) space shown in Figure 3.3. If, in addition, Ap > h; In(K),
then supplier ¢ sets his active basestock level at zero, ceding almost all his demand

share to supplier j.
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Note that Ap does not have to be positive for supplier j to be more profitable
than supplier ¢. That is, supplier j can have a smaller margin than supplier i, i.e.,
Ap < 0, and still be more profitable than ¢, if Ap > h;In(3;) — h; In(5;). In this case,
however, Ap will certainly be smaller than h; In(K), which means that supplier ¢ will
not set his active basestock level at zero.

If Ap < hjIn(K), the optimal active basestock levels of the two suppliers uniquely
solve equations (3.55) and (3.56). If we substitute As§ from the first equation into

the second, we obtain an equation of the form
a1 + asx = ag,

where a; = e®P/"i | ay = h;/hj, a3 = (hiBi + h;B;)/hj, and x = e*i. This equation is
increasing in  and has a unique solution. In general, however, we cannot obtain a
closed form for it, except for special cases, e.g., when as = 1,2, etc. An interesting

result is given by the following corollary.

Corollary 3.3. If Ap =0 and h; = h; = h, then s{ = s; = s°, where

=, (3.58)

S

where 3 = (b+ h)/h and b= (b; + b;)/2.

The proof follows from (3.55) and (3.56). The intuition behind Corollary 3.3 is
that if the suppliers have the same margins and inventory cost rates, they bring in
the same profits to the team and incur the same inventory costs, so there is no reason
for them not to split the demand by setting their active basestock levels equal to each
other. If the suppliers have different backorder cost rates, say b; > b;, then s{ < si"
and s > s7", but the important fact remains that sf = s%. To see why the difference
in the backorder cost rates makes no difference, consider the following. Every time
supplier ¢ fails to deliver on-demand, the team pays b;, and every time supplier j fails,
the team pays b;. Because the supplier switches from one supplier to the other, the
team pays b; + b; in every full cycle with two switches. Although, this cost matters,

how it is divided among the suppliers is not important for the team’s profit, because
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it will be paid by the team as a sum. Based on this argument, we conjecture that the
main result of the corollary, i.e., that sf = s§ = s holds for any demand distribution.
Expression (3.58) is special to the exponential distribution.

Finally, if the suppliers are symmetric, then by Corollary 3.1, their maximum team
payoff is G(s™), which for the exponential case is given by (B.11), after dropping the
supplier index. On the other hand, the payoff of each supplier under the unique Nash
equilibrium is given by (3.53). Therefore, for the symmetric case, the price of anarchy
defined in (3.43) becomes:

p—In(B)
2(1—W(Be=r))

PoA = (3.59)
If the symmetric suppliers decide to cooperate, the adjustment backorder penalty
rate b° that the buyer must charge them to recover the fill rate that she can enjoy
under supplier competition (assuming that b = 0) is found, after the analysis in
Section 3.5.2, by setting s = s¢, where s™ is given by (B.6) in Appendix B with
S = (b°+ h)/h and s is given by (3.52) with 8 =1 (since b = 0), and solving for b°.

The solution is
b = h (eﬂ—HW(el”’) - 1) . (3.60)

From (3.60), b° is h times a factor that is approximately exponentially increasing
in p since W (e'~”?) € (0,1) for p > 0. This is expected, because as p increases, the
margin p becomes increasingly more important than the inventory holding cost rate
h, pushing the active basestock levels at equilibrium increasingly higher. Therefore, if
the suppliers cooperate, the buyer needs to charge them an increasingly larger penalty

rate b to make them raise their active basestock levels to the equilibrium values.

3.6.2 Numerical example

We illustrate the analytical results developed in the previous subsection with a numer-
ical example, also investigating the effect of the problem parameters on the optimal
active basestock levels and the resulting performance measures. In the example, we

assume that the buyer’s demand is exponentially distributed with rate A = 1 and that
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the inventory cost rate of each supplier k (k = i, j) is given by hy = Ixcg, where Iy
is the interest rate used by the supplier. Initially, we consider a nominal instance in
which the suppliers are symmetric with parameter valuesc, = 1, [, = 0.4, rp, = r = 3,
and b, = b= 0.7, for k =1, j. Then, we vary the values of certain parameters one at
a time within a certain range.

As we vary each parameter value, we calculate the myopic basestock level pair
(i, s7") from (B.6), the active basestock level pair at equilibrium (s§, s%) by solving
(3.51), and the optimal active basestock level pair under cooperation (s§, s§) by solving
either (3.55) and (3.56) or (3.57). We also calculate the resulting payoffs (TIf, IT$) and
(I, 1) from (B.7) in Appendix B, the demand shares (7f,75) and (7f,75) from
(3.11), and the fill rates ¢f and ¢° from (3.12). Finally, we compute the price of
anarchy PoA from (3.43), where II(s{, s7) = II{ + II§ and TI(s{, s§) = TIf + II5, and

the adjustment backorder penalty rate b from (3.60).

Figures 3.4, 3.5, and 3.6 show plots of the above-calculated values as we vary

¢j, I;, and r;', respectively. The difference between ¢; and I; is that while ¢;
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Figure 3.4: Optimal basestock levels and performance measures vs. ¢;.

affects the margin p; = r; — ¢; and the inventory cost h; = Ic;, I; affects only h;.
Increasing either parameter, however, reduces supplier 7’ payoff. On the other hand,
increasing r;, raises his payoff. For this reason, the plots in figures 3.4 and 3.5 have
the same structure, whereas the plots in Figure 3.6 have a symmetric structure. We
will therefore briefly discuss only the plots in Figure 3.4.

From the first three plots, we observe that supplier j’s active basestock level,

We vary r; for the sake of completeness because, as the suppliers compete solely on availability,
it is natural to assume that r; =~ r;
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Figure 3.6: Optimal basestock levels and performance measures vs. r;

payoff, and demand share at equilibrium and under cooperation are decreasing in c;,
reflecting the resulting drop in p; and rise in h;. Supplier ¢’s active basestock level at

equilibrium is also decreasing in c;, although at a smaller rate, echoing the drop in

€
It

demand share at equilibrium and under cooperation are increasing in c;, reflecting

s¢. His active basestock level under cooperation, however, as well as his payoff and
the decrease in supplier j’s profitability. The active basestock levels of both suppliers

under competition are higher than their myopic levels, confirming Proposition 3.1.

When ¢; = ¢; = 1, the suppliers are symmetric and have the same active basestock
levels, payoffs, and demand shares. More specifically, their active basestock levels and
payoffs under cooperation are equal to the corresponding myopic values, confirming
Corollary 3.1. When ¢; > 1, supplier j becomes less profitable than supplier 7, so
s$ drops below s7', whereas s{ rises above s, confirming Theorem 3.4 (ii). When
¢j & 1.6, s§ = 0, confirming Theorem 3.5 (i), whereas s{ keeps increasing in ¢; but

remains below s¢, confirming Theorem 3.5 (ii).

The fill rate that the buyer enjoys under competition is generally very high and
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is not significantly affected by c;. The fill rate under cooperation, on the other hand,
is significantly lower, dropping to approximately 65% when ¢; ~ 1.6. The team
payoff under cooperation is more than double the sum of the suppliers’ payoffs under
competition, as indicated by the PoA plot.

Figure 3.7 shows plots of the optimal basestock levels and performance measures

as we vary b;. As expected, s is increasing in b; while IIf is decreasing, although
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Figure 3.7: Optimal basestock levels and performance measures vs. b;.

these changes are very subtle. We also observe that s{ = s} and df = d for all values
of b;, confirming Corollary 3.3. From Figure 3.7, it appears that b; has no effect on
the active basestock levels and performance measures at equilibrium. A close-up of
the first three plots in Figure 3.7, shown in Figure 3.8, reveals that b; affects these

quantities but the effect is negligible. The reason for this is that the exponential
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Figure 3.8: Close-up of optimal active basestock levels and performance measures vs.
b;.

terms in equations (3.51) are much larger than the other terms, and as a result,

the solution (sf, s%) is sensitive to the multiplicative terms p; but insensitive to the
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additive terms ;. Hence it is insensitive to the backorder cost rates. The intuition
behind this observation is that the main concern of the suppliers under competition
is to maintain the buyer’s loyalty because losing it as a result of a stockout means
relinquishing profits for many periods following the stockout. This concern drives
the suppliers to significantly increase their active basestock levels above their myopic
levels as can be seen in Figure 3.7. Avoiding paying the backorder cost is therefore
of minimal concern. Because the active basestock levels at equilibrium are so much
larger than the myopic levels, the frequency of stockouts is significantly reduced,
further limiting the impact of backorder costs, as mentioned earlier.

Figures 3.9 and 3.10 show plots of the optimal active basestock levels and perfor-

mance measures as we vary r and b.
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Figure 3.10: Optimal active basestock levels and performance measures vs. b.

From these two figures, we observe that the optimal symmetric active basestock
levels and performance measures under cooperation are sensitive in b and insensitive
in r, whereas, under competition, they are sensitive in r and insensitive in b. The

reason for this is that from (3.37), s = s™ where from (B.6), s depends only on
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the tradeoff between h and b, expressed by [, and is independent of . On the other
hand, from (3.52), s¢ depends mainly on the tradeoff between h and p = r — ¢,
expressed by p. It also depends on S through the Lambert W function, but this
dependence is negligible for the same reason that the asymmetric active basestock
levels are insensitive to b;, discussed earlier.

Finally, Figure 3.11 shows plots of the adjustment backorder penalty rate b¢ as we

vary ¢, I, and r. From these figures, we observe that the effect of these parameters on

900 900 262
197
600 600
b b b 132
300 300
67
0 0 2
0.2 0.8 1.4 2 0.1 0.5 0.9 2 3 4
c 1 r

Figure 3.11: Adjustement backorder penalty cost b€ vs. ¢, I, and r, for b = 0.

b¢ is dramatic, verifying our remark following (3.60) that b° is exponentially increasing
in p. For instance, for a 40% margin rate and a 20% interest rate, p = [(r —¢)/c]/I =
0.4/0.2 = 2. For p = 2, b° = 2.6h from (3.60). For p = 4 and p = 6, b° = 20.1h
and 148.4h, respectively. In practice, it does not make sense for the buyer to raise
b¢ above a fraction of the selling price r. So, if the suppliers decide to cooperate and
p is large, the buyer will not be able to match the fill rate that she can enjoy under

supplier competition.

3.7 Extension to multiple sourcing

As we wrote in the Introduction, dual sourcing predominates multiple sourcing. Nev-
ertheless, the analysis of the two-supplier model can be straightforwardly extended
to n > 2 suppliers under the following setting. The buyer arranges the n suppliers in

a rank order list based on the last service she received. At the beginning of period t,
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each supplier ¢ orders a non—negative quantity ahead of demand, based on his inven-
tory level, ;; € R, and his placement in the buyer’s list (ranking), a;; € {1,2,...,n},
where 1 indicates the top of the list (highest ranking) and n indicates the bottom
(lowest ranking). The order arrives before the end of the period, raising the supplier’s

inventory level to v;; > x; ;.

At the end of the period, the buyer selects the highest-ranking supplier at the
top of the list and demands from him a random quantity w;. If the supplier meets
all the demand at once, he is kept at the top of the list and carries any leftover
inventory to the next period. If he fails to meet all the demand at once, the buyer
backorders the unmet demand with him and moves him to the bottom of the list,
thereby bringing all the other suppliers one position closer to the top of the list. This
way, the buyer selects all the suppliers in a round-robin fashion, switching suppliers

after every stockout.

Round-robin is a common process for fair resource allocation. It is a popular
method for scheduling processes in computer and communication systems, traffic
and transportation systems, production systems—most notably in the context of
the stochastic economic lot scheduling problem (SELSP)—and other polling systems
Boon, van der Mei and Winands (2011), scheduling games in sports tournaments
Rasmussen and Trick (2008), and other applications. It is simple, easy to implement,
and starvation-and-envy-free. It is also one of the choices for supplier allocation in
many ERP systems. For example, in SYSPRO’s Preferred Supplier feature, it is one
of the sourcing options SYSPRO (2022). In SAP’s Allocation Quota Arrangement
feature, each procurement lot is assigned to a source of supply based on its quota
rating SAP (2022c). If the quota of all sources are set equal (which is the default
value), the lots are assigned on a round-robin basis. What we propose in this paper
is for the buyer to use round-robin as a fair and starvation-free supplier selection
scheme, allowing each supplier to keep his “preferred supplier” status as long as he
can afford to before giving his turn to the next supplier.

Under this setting, Theorem 3.1 immediately extends to n suppliers. Namely, the

optimal ordering policy of supplier 7 is a ranking-dependent basestock policy, denoted

by yi(«a;), given by: yf(a;) = 0,a; # 1 and ¥ (1) = s; > 0. Assuming, without loss
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of generality, that the suppliers are numbered according to their initial position in
the buyer’s list, the ranking vector of the suppliers, @ = (aq,...,q,), under the
optimal policy is a discrete-time Markov chain with n states, (1,2,...,n — 1,n),
(n,1,...,n—2,n—1), (n—=1,n,...,n=3,n=2),...,(2,3,...,n,1), arranged clockwise
in a circle, and transition probabilities from the state where a; = 1 to the state where

Qi1 mod n = 1, equal to F(s;), i =1,...,n, (see Figure 3.12, for n = 4).

F(sy)

F(sy) F(s2)
F(s4) F(s2)
Gasd) Ga1d)

F(s4) F(s3)

F(s3)

Figure 3.12: Markov chain transition diagram of the ranking vector for n = 4.

It is trivial to show that the steady-state probability of the state where o; = 1,
representing the expected average demand share of supplier ¢ as a function of the

vector of active basestock levels s = (sy, ..., s,), denoted m;(s), is given by

i) = Hk;ﬁiF<Sk)
' DY Hk;él F(sy)

(3.61)

From the above expression, the expected average profit (payoff) of supplier i,

denoted by II;(s), and its first partial derivative with respect to s; are

=

=
V)

N—
I

mi(8)Gi(si), (3.62)

oMi(s) Tl Flse) 6i(s). (3.63)

Os: (Zz Hk;&l F(Sk)>

where ¢;(s) is given by:

¢i(s) = (H F(Sk)) Gi(si) + (Z 11 F(Sk)> (F(s:)Gi(si) + f(s:)Gilsi)) . (3.64)

ki i kAl
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where by convention, the products in the above expressions equal 1 if they contain
no terms.

The following Theorem extends Proposition 3.1 and Theorem 3.2 to multiple sup-
pliers, where s_; denotes the vector of active basestock levels of all suppliers except
1.

Theorem 3.6. The best response si(s_;) is bounded as follows:

0<s™<si(s_y) <sM s,€0,00), k#i, (3.65)

where s and s satisfy (3.7) and (3.8). Moreover, if the following condition holds:

5 < 0, s; € (s, 5M), s, €[0,00), k#1, (3.66)

7 3

the best response sf(s_;) is
(1) a global maximizer of the payoff 11;(s), s € [0,00), k # i, uniquely satisfying
the first-order condition 011;(s)/0s; = 0, which reduces to:

gbi(SZ(S_i), S—i) = 0, (367)

(it) increasing in s;, and its derivative with respect to s; is

Osi(s—i)  O0¢i(si(s-i),8-:)/0s;

9s;  O¢i(si(s_i),8-:)/0s;

(3.68)

(111) increasing in 0, p;, b;, and decreasing in h;.

As in the case of the dual-sourcing model, condition (3.66) is very mild and is
easily satisfied. For example, if f(w) is non-increasing, (3.66) is immediately met.
The expression for d¢;(s)/0s; is given by equation (B.2) in the proof. If we use that

expression and rearrange terms, condition (3.66) reduces to:

mosM), s, €[0,00), k#1i, (3.69)
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where the right-hand side of the above inequality is positive. The above expression
is the extension of (3.21) to n suppliers.

As in the dual-sourcing model, Theorem 3.6 (ii) implies that under condition
(3.66) if supplier j increases his active basestock level, supplier i will follow suit to
mitigate his loss of demand share. Therefore, competition drives all the suppliers to
move away from their myopic basestock levels, s!".

The issue of the existence and uniqueness of a Nash equilibrium for the general
case of asymmetric suppliers is outside the scope of this paper. Here, it suffices to
point out that the best response functions are increasing and that “increasing best
response functions is the only major requirement for an equilibrium to exist” Cachon
and Zhang (2006). The following proposition extends Proposition 3.2 to multiple

symmetric suppliers.
Proposition 3.6. If the suppliers are symmetric and condition (3.66) holds, then

(i) There ezists at least one symmetric pure-strateqy Nash equilibrium s¢ = (s, ..., s%),

where s¢ satisfies:

fls9) __n G'(s%)

_ = — ) 3.70
F(s¢) n—1G(s%) (3.70)
The resulting payoff of each supplier i is:
G e
mesey = 98 o1 (3.71)
n
(ii) There exists no asymmetric pure-strategy Nash equilibrium.
(i1i) If the following condition holds:
54
f;is) <0, se (s, M), (3.72)
where (;3(5) = @(s,...,s), then the symmetric equilibrium is unique.

The proof is similar to that of Proposition 3.2 and is therefore omitted. As in the
dual sourcing case, note that if the suppliers are symmetric, condition (3.72) instead

of (3.66) is needed for the uniqueness of the Nash equilibrium, because the first-order
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conditions for the two suppliers reduce to one equation (because of symmetry) which
has a unique solution, under (3.72).

If the suppliers decide to cooperate, then the optimal ordering policy of each
supplier in the team has the same structure as that under competition. Moreover,
the payoff of the team, denoted by TI(s), is the sum of the individual payoffs of the
suppliers, i.e.:

II(s) = Z IL;(s) = Z Ti(8)Gy(s5). (3.73)

Assuming without loss of generality that the suppliers are numbered from 1 to n
so that G1(sT") < Ga(sh) < --- < Gp(s)), the following theorem extends Theorem
3.4 to multiple suppliers.

Theorem 3.7. The optimal basestock level vector s¢ and the resulting maximum team
payoff T1(s°) satisfy:

(1) If Gi(sT") = Ga(sy') = - -+ = Gu(sy'), then
si=s",1=1,2,...,n, (3.74)
[(s%) = TI(s™) = Gy (7") = Ga(sf) = -+ = Gu(sT).  (3.75)

(i1) If G1(s7") < Ga(sh) < --- < G,(sI"), then there exists an index k such that:

s; €0,s7"), i <k and s§ € (sT,sj-w), j > k. (3.76)
G1(sT") < TI(s™) < TI(8°) < Gp(s8). (3.77)

In both cases:
II(s%) > II(s°), (3.78)

where T1(s¢) = >, 11;(s°) is the sum of the payoffs of the n suppliers at equilibrium

under competition.

The proof is similar to that of Theorem 3.4 and is therefore omitted. Theorem 3.7

implies that if the condition in (i) holds, all the suppliers have the same myopic profit.
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In this case, any supplier moving away from his myopic basestock level hurts the
team’s profit. If the condition in (ii) holds, the customers are arranged in ascending
order of myopic profit. The suppliers with the k£ smallest myopic profits use active
basestock levels that are below their myopic basestock levels, ceding a part of their
demand shares to the remaining n — k suppliers who use active basestock levels that
are above their myopic basestock levels. Therefore, all suppliers sacrifice some of
their myopic profits to optimally balance their demand shares by transferring some
of the buyers’ business from the less profitable to the more profitable suppliers. The
total expected average profit of the suppliers at equilibrium, if one exists, is higher
than their team profit under cooperation, because under competition all suppliers use
active basestock levels which are above and far from their myopic basestock levels,
whereas under cooperation they use active basestock levels which, roughly speaking,

are closer to their myopic basestock levels.

The round-robin switching policy of the buyer that we considered in this section
is a particular policy that the buyer can use to stimulate competition on availabil-
ity among multiple suppliers, but there can be other policies. One such policy, for
example, is to let all the suppliers compete for the buyer’s business on their active
basestock levels without punishing them for failing to deliver on demand. Under such
a policy, every supplier will try to overbid the other suppliers. As every supplier ¢
incurs losses when his active basestock level is above sM, the winning supplier will
be the supplier with the highest value of sM. He will set his active basestock level
just above the second highest s value, and earn the supplier’s loyalty, driving all the
other suppliers out of the supplier’s business. Such an outcome may not be desirable

for the buyer.

To avoid this situation, an alternative policy is to let all the suppliers compete for
the buyer’s business on their active basestock levels, except for the supplier who failed
most recently. Under this variant, the winning supplier will again be the supplier with
the highest value of s} unless he is the one who failed most recently. If this is the
case, the winning supplier will be the supplier with the second-highest value of sM.
When that supplier fails, the supplier with the highest value of sM will be eligible

for selection again and will win the buyer’s loyalty until he fails again. This cycle
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will be repeated between the buyers with the two highest values of sM, and all other
suppliers will have been driven out of the buyer’s business, leaving the buyer in the
dual sourcing situation studied in the main part of this chapter.

The idea of banishing a supplier who fails for one supply run can be generalized
to banishing him for k supply runs, where k£ € {0,...,n}. In this case, the switching
cycle will be repeated between the buyers with the k highest values of s, and all
other suppliers will have been driven out of the buyer’s business.

In the round-robin switching policy, & = n. Under this policy, when a supplier
fails to deliver on demand, the buyer punishes him by sending him to the bottom of
the list. This implies that the failed supplier will be selected again only after all the
other suppliers fail, one after the other, i.e., his turn will come up again after n — 1

stockouts. Therefore, sending a failed supplier at the bottom of the list makes sense

if the buyer wants to keep all the suppliers in business.

3.8 Discussion and future research

The behavior of an always-a-share buyer who plays her suppliers against each other
by rewarding availability with loyalty and punishing stockouts with switching has
significant implications for the suppliers’ inventory policy and long-run average profit.
The ordering decision of the supplier who enjoys the buyers’ loyalty requires the
careful balancing of his inventory and backorder costs against his future profit loss
resulting from ceding the buyer’s loyalty to his competitor(s). There are several
possible directions for future work.

In our model, we assume that the buyer backorders any unmet demand with the
supplier that she selects to meet the demand to ensure the uniformity and traceability
of her order. A different possibility is to presume that if the selected supplier runs
out of stock, the buyer tries to procure the missing items from the other supplier.
In this case, it may be in the interest of the suppliers to hold some spare inventory
even when they are inactive. This interest will be more intense if fully satisfying the
residual demand results in gaining the buyer’s loyalty in the next period.

A similar situation arises if the inactive supplier is not informed about the active
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supplier’s failure to serve the buyer. In this case, he must also hold some spare
inventory to meet the buyer’s demand if she calls on him without warning following
a stockout by the other supplier.

Another intelligence-related issue concerns the information that the suppliers know
about each other. In our model, we assume that each supplier knows the other sup-
plier’s cost and revenue parameters. In practice, these parameters can be unknown,
in which case the supplier will have to estimate them through learning. The same
holds for the buyer’s demand distribution.

Finally, we assume that the buyer is loyal to one supplier as long as he serves her
well but immediately switches to the other supplier after the first failure. If there
is friction associated with switching, the buyer may think twice before switching at
the first stockout incident. An alternative is to issue a warning to the supplier who
fails the first time providing him with another chance to stay active, but switch after
the second failure. In this case, the active supplier will use different active basestock
levels depending on whether he has been issued a warning or not. Intuitively, the
basestock level before the warning should be smaller than that after the warning, but
it would interesting to see how much smaller and also how both levels compare to the

active basestock level when switching occurs after the first failure.



Chapter 4

Dynamic ordering and buyer
selection policies in a newsvendor
setting with service-dependent

demand

4.1 Introduction

In this chapter, we study a newsvendor model of a firm that orders items for a group of
repeat buyers. The buyers generate different revenues and have different average visit
rates that depend on whether they are satisfied or dissatisfied with their last visit.
In Section 4.2, we formulate the dynamic ordering and buyer selection problem of
the firm. In Section 4.3, we determine the myopic policy and derive some important
structural results on the optimal policy. In Section 4.4, we fully characterize the
optimal policy for two buyers and compare it with other policies which form the basis
of heuristic policies for larger problems. In Section 4.5, we probe into the optimal
policy for more than two buyers by numerically solving and discussing a problem
instance with three buyers. In Section 4.6, we set up the Lagrangian relaxation of the
original problem. In Section 4.7, we develop three heuristic index policies for the buyer

selection problem based on the relaxed problem. For the Lagrangian index policy, we
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derive the “best” Lagrangian price in closed form as the solution to the Lagrangian
dual problem. In Section 4.8, we explore and compare the performance of the three
index policies by numerically solving a large number of problem instances with five
and ten buyers. For the five-buyer instances, we also compare the index policies with
the optimal policy. Finally, in Section 4.9, we summarize our findings and propose
directions for future work. Supplemental material for this chapter, including proofs,

can be found in Appendix C.

4.2 Model formulation

A firm supplies items to a finite set of buyers B = {1,2,...,n} over consecutive
time periods. At the beginning of each period ¢, the firm orders a quantity y, €
By = {0,1,...,n}, and at the end of the period, each buyer i (she) visits the firm
with a probability that depends on whether she is satisfied or not with her previous
visit. This probability is denoted by g;(cv+), where o, € {0,1} is the satisfaction
state of buyer ¢ at the beginning of period ¢, with 0 meaning dissatisfied and 1
meaning satisfied. We assume that every buyer that visits the firm demands one
item, and that satisfaction depends solely on item availability so that our results are
not overshadowed by the complexity of other influencing factors. We refer to ¢;(ci¢)
and its complement G;(c;¢) = 1 — ¢;(u ) as the average visit rate and deferral rate of
buyer 4, respectively, when in satisfaction state ;. The buyer’s demand is denoted
by d;(c.). For notational simplicity, henceforth, we omit the dependence of ¢; and

d; on «;+, wherever possible. The demand d; is Bernoulli distributed with:

We assume that the demands of different buyers are independent and that a

satisfied buyer is more likely to demand service than a dissatisfied buyer is, i.e.:

q;(1) > ¢;(0) >0, i € B.
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For convenience, we define:

Y (D) ,1€B (4.1)
__@0) = @) @(1) —g(0) ;
e @) @) <5 42

We refer to 7; and 4; as the loss-of-visit-rate coefficient (LVC) and gain-of-deferral-
rate coefficient (GDC) of buyer i, respectively, when switching from the satisfied to
the dissatisfied state.

The total demand of all buyers for any subset of buyers A C B is denoted by D 4,
ie, Dy =) cadj(a;). Random variable D4 is the sum of na = |A| independent
non-identical Bernoulli random variables, so it follows a Poisson binomial distribu-
tion Wang (1993). The p.m.f. and c.d.f. of D4 are denoted by f4(k) and F(y),

respectively, and are given by:

Z HqJ a] H QJ a] k' — 0 (43)

kjeXx jeA\X

= falk), y=0,... ,n4, (4.4)
k=0

where [A]* is the set of k-combinations of A. Computing f4(k) and F4(y) is compu-
tationally demanding even for modest values of n 4, because |[A]*| = C}* can be very

large, particularly for k close to n4/2, where C;* denotes the binomial coefficient.

In addition to D4, we also define the total demand of all buyers in A when they
are all satisfied, Dy = 3~y d;(1). The p.m.f. and c.d.f. of D} are denoted by f}(k)
and F(y), respectively, and are given by (4.3) and (4.4) for a; = 1.

In our analysis, we will focus on two special subsets of buyers. The first is denoted
by A¢) and contains the first ¢ buyers after all buyers have been reordered in some
way so that (i) denotes the index of the i"® buyer in the reordered set, i.e., Ay =
{(1),(2),...,(i)}, i € B. For this subset, ny, =i and Dy, = 22:1 diy(agy). The
p.d.f. and c.d.f. of Dy, are given by (4.3) and (4.4) for A = A;). For notational
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simplicity, D4, fa, (k), and Fy4, (y) are henceforth denoted by D, fei)(k), and
Fiy(y), respectively. By convention, we define Do) = 0, f0)(0) = 1, and F(o)(-) = 0.
Note that D, is the total demand of all buyers.

The second subset is denoted by A_; and contains all buyers except i, i.e., A_; =
B\ {i}, i € B. For this subset, ny , = n—1and Da, = > ;cp iy di(a;). The
p.d.f. and c.d.f. of D4 _, are given by (4.3) and (4.4) for A = A_,. For notational
simplicity, Da_., fa_,(k), and F4_,(y) are henceforth denoted by D_;, f_;(k), and
F_;(y), respectively.

Next, we define a component-wise ordering of satisfaction state vectors.

Definition 4.1. For two satisfaction state vectors o’ = (o, ..., al) anda = (aq, . . .,
ay), if o > o, Vi € B, we say that o is greater than (or equal) to a and write
o > a. If o > «, the total demand in o' is stochastically larger than the total
demand in o, denoted Dy(a') > Dey(a).

After the demand is realized, the firm must select which buyers to serve. We refer
to buyers who visit the firm demanding an item as active and to those who do not visit
as inactive. We denote the buyer selection decision by u,;; € {0,1}, where 0 means
do not serve and 1 means serve buyer i. The vector of selection decisions is denoted
by w: = (u14, U2y, - .., Upnyt). For notational simplicity, henceforth, we drop the time
index t, wherever possible. Given order quantity y € By and demand realization
d € {0,1}", the action space U(y, d), representing the possible values of u, is defined
as:

Uy, d) = {ue{O,l}”:uigdi, i€ B, Zuzgy} (4.5)
icB

The first inequality ensures that inactive buyers are not served. The second in-
equality is a capacity constraint which states that the number of buyers served cannot
exceed the order quantity y.

Active buyers become satisfied if served and dissatisfied if not served. Inactive
buyers remain in their previous satisfaction state. Mathematically, this is expressed
as:

Qi1 = (i, dig, uiy), 1 € B, (4.6)



4.2. MODEL FORMULATION 93

where ¢ is the satisfaction state transition function defined as:
(,0(0(2‘, dz,uz) = u; + (1 - di)Oéi, 1€ B, (47)

and in vector form as:
d(a,d,u)=u+(1—-d)oa, (4.8)

[

where “o” denotes the Hadamard product (component-wise multiplication).

The short-memory behavior of buyers that we assume is adopted in several models
that link demand to past service (e.g., Hall and Porteus (2000); Liu et al. (2007)).
In the B2B setting that we consider, it is supported by the finding in Dion and
Banting (1995) that multiple stockouts seem not to have serious consequences for
buyer loyalty, beyond that of the initial occurrence. This behavior is also consistent
with the peak-end rule, which suggests that the remembered utility from an experience
largely depends on its peak and its end Fredrickson and Kahneman (1993). It is
also compatible with the related concept of the binary bias, which is the persistent
tendency that people have to dichotomize evidence leading to binary perceptions—in
our case, satisfied vs. satisfied—Fisher and Keil (2018); Fisher, Newman and Dhar
(2018).

The firm pays an acquisition cost ¢ per item ordered at the beginning of each
period and receives a revenue r; from each buyer i that it serves at the end of the
period, where r; > ¢, i € B. Any unsold items have zero salvage value. Therefore,

the profit per period of the firm, denoted by g(y,u), is given by:

g(y,u) = Z Tit; — cy. (4.9)
ieB
The model described above can also be used to represent a firm providing service
instead of goods to a group of buyers, e.g., a technical support company that each
day must decide the number of technicians on call to respond to requests for in-situ
technical support from its clients.
The decision problem of the firm in each period is to select y € By and uw € U(y, d)

to maximize its long-run average expected profit, denoted by II¥*. The optimality
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equation for this problem can be written as follows:

I+ V() = max {E [ max {g(y,u)+ V(®(a,d, u))}} } , Ve, (4.10)
yeBy | d |ueld(y,d)

where IT is the maximum average expected profit and V() is the optimal differential
profit function starting in a.. Solving (4.10) in one go is practically impossible because
the optimal decisions y* and u* are sequential and interdependent, with y* depending
on a given u*, and u* depending on «, y*, and the realization of d. To unravel the
self-reference in (4.10), we can decompose it into the following two subproblems.
Subproblem A: Given ordering policy y = y(a) € By, find the optimal buyer
selection policy u¥* = u*(a,y,d) by solving the following Dynamic Programming
(DP) problem:

I+ V¥ (a)=E| max {g(y(a),u)+ V" (P(a,d,u))}|, Ya, (4.11)
d |ucl(y(a),d)

2

where superscript “y, *” indicates operation under the optimal buyer selection policy
for given ordering policy y = y(a).
Subproblem B: Given buyer selection policy u = u(a,y,d) € U(y,d), find the

optimal ordering policy y** = y*(a|u) by solving the following DP:

I+ V' (a) = max {E [g(y, (e, y. d)) + V**(@(e, d,u(ey,d)] |, (412)

yE€Bo

Vo, where superscript “x,4” indicates operation under the optimal ordering policy
for given buyer selection policy u = u(e, y, d).

The optimal decisions y* and u* that solve (4.10) can be obtained by simultaneously
solving Subproblems A and B, i.e., y* and u* satisfy u* = u¥"* = u*(a,y*, d) and
y* = y** = y*(au*). Solving either of the two subproblems exactly, however, is gen-
erally infeasible; therefore, resorting to numerical methods, such as value iteration, is
the only viable option. Even so, numerically solving (4.11) becomes computationally
intractable as the number of buyers increases, due to the curse of dimensionality and

because the second constraint in (4.5) couples the selection decisions across buyers.
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The number of computations that must be performed in each value iteration as a
function of n, denoted by N(n), is:

N(n) = }:

an mln(yk] )

where 2" is the number of satisfaction state vectors, C}' is the number of demand

vectors for which the total demand is equal to k, and C* is the number of

min(y,k
possible buyer selection decision vectors when the total demgn)d is k and the or-
der quantity is y. Indicatively, the above formula for different values of n yields:
N(2) = 52, N(3) = 312, N(5) = 10,336, N(7) = 337,280, N(10) = 65.71 x 106,
N(15) = 478.24 x 10°, and N(25) = 28.44 x 10'8.

A special class of easy-to-implement buyer selection policies that will play an impor-
tant role in our analysis is the class of index policies. An index policy, denoted by
u”, is a feasible buyer selection policy that assigns to each buyer ¢ an index, denoted
by x;, which is, in general, a function of a and y. The active buyers are served in

descending order of their indices until either the order quantity is exhausted or there

are no more active buyers to serve. A formal definition of u” follows.

Definition 4.2. Under index policy u”, the buyer selection decision, denoted by

uf(’“"i)(a,y,d), 1 € B, is given by:
uly(a,y, d) = dg1 b <1t} ae€{0,1}", ye By, i € B,
where (i) indexes the buyer with the i™ highest index, i.e.,
Ty 2 L) =0 2 T

As was mentioned earlier, the optimal buyer selection policy u* depends in general
on a, y, and the realization of d. This means that for the same a and y but different
realizations of d, the order in which buyers are served may differ, as has been verified
by our numerical experiments. Under an index policy w*, for the same a and 1y,

buyers are always served in the same order for any realization of d. In other words, the
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indices are computed before the demand (ex-ante) but are applied after the demand

(ex-post). Thus, index policies are suboptimal in general.

Indices can have varying degrees of sophistication. An index that depends only on
the parameters and/or satisfaction state of the buyer to which it pertains is referred
to as uncoupled. An index that also depends on y is referred to as weakly coupled,
whereas an index that depends on the parameters and/or satisfaction states of all
buyers is called strongly coupled. The simplest uncoupled index is the revenue rate r;,
which leads to a revenue-greedy (or margin-greedy since the order cost ¢ is uniform)

buyer selection policy.

4.3 On the optimal policy

This section characterizes the optimal policy for the single-period problem (myopic
policy) and provides some properties and conjectures on the optimal policy for the

infinite-horizon problem.

4.3.1 Myopic policy

The single-period problem is a newsvendor problem where the newsvendor sells items
to n heterogeneous buyers with independent, non-identical Bernoulli demands and
different revenue rates. The optimal ordering and buyer selection policy for this
problem is henceforth referred to as myopic policy, and the resulting myopic expected

profit function is given by the following theorem.

Theorem 4.1. The myopic buyer selection policy for any order quantity y € By s

an index policy uw" with index r;, © € B. The resulting myopic expected profit, denoted
by G(y), is:

Y n
Gy) = awra+ Y Funyly— Dawra — ey, y € By, (4.13)
=1

i=y+1
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where (i) indexes the buyer with the i™ highest revenue rate, i.e.:
Ty 2 T@) 2 2 () (4.14)

Function G(-) is concave in y, and the myopic ordering policy, denoted by y™, is given

by:
ym = arg min { Z f(i—l)(y)Q(i)T(i) S C} . (415)

y€Bo\{n} i
If there is no y satisfying (4.15) then y™ = n.

The proof is in Appendix A. Theorem 4.1 states that the myopic buyer selection
policy is revenue-greedy and the myopic ordering policy is newsvendor-type. As was
already mentioned in Section 4.2, computing f(;)(y) is not straightforward. Approx-
imation methods such as the Poisson and normal approximations have been used
in the literature, and Hong (2013) has derived an exact formula with a closed-form

expression for the c.d.f. of the Poisson binomial distribution.

Corollary 4.1. The quantity y™ is bounded as follows:

1 (T(n) — € m 1 (ry —¢
o (P25 e g (0. o

C C

The proof is similar to that of Proposition 2 in Sen and Zhang (1999) and hence
is omitted. In all the above expressions, we have suppressed the dependence on «
for notational simplicity. In fact, y™ depends on o because q(;) and f(;) in (4.15) are
functions of ;) and (aq, ..., aq-1)), respectively. The following proposition states

an important property of y™ ().
Proposition 4.1. If &' > a, then y™(a') > y™ ().

The proof is in Appendix A. Proposition 4.1 states that the greater the satisfaction
state vector, the larger the myopic order quantity. Proposition 4.1 and constraint
(4.16) are useful in reducing the search space of the optimal order quantity, which
can be computationally demanding for large n, given the exponential growth of the

state space (2") and the computational complexity of evaluating f and F, as was
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mentioned earlier. We caution that the concavity of G(y) stated in Proposition 4.1
holds only under the optimal buyer selection policy. That is if the firm does not use
the revenue-greedy policy to select buyers, G(y) may not be concave, and y™(a) may

not be non-decreasing in .

4.3.2 Properties of the optimal policy

The myopic policy is appealing because it is simple and focuses on short-term revenue
and hence profit. However, it is suboptimal and can be arbitrarily bad for the infinite-
horizon problem because it ignores the effect of decisions on buyer satisfaction and
future demand. Nevertheless, the monotonicity property of the myopic order quantity
stated in Proposition 4.1 is fundamental and should hold beyond the confines of the

single-period problem. This intuition is supported by the following proposition.
Proposition 4.2. If o' > a, then V(') > V(a).

The proof is in Appendix A. It is based on the sample-path argument that the firm
will perform better if it starts from state o’ and follows the optimal policy starting
from a, than if it starts from a. Proposition 4.2 suggests the following analog to

Proposition 4.1 for the infinite-horizon problem.
Conjecture 1. If o' > a, then y*(a') > y* (o).

Conjecture 1 is based on the fact that o’ > a implies D,y (') >4 D,y (o) by
Definition 4.1. The claim is that by ordering at least as many items in state o’ as
in state a, the firm can reap a higher revenue and avoid dissatisfying buyers who
are more likely to be active in @’ than they are in . In the case of homogeneous
buyers, where selection is not an issue, Deng et al. (2014) proves this monotonicity
property by approximating the value function with a linear function in the number of
satisfied buyers, since this approximation is exact for infinite buyers. If the buyers are
heterogeneous, the problem is more complicated, due to the buyer selection decision.
In this case, the monotonicity property makes sense only under the optimal selection
policy, as was also the case with Proposition 4.1. Conjecture 1 is verified in all our

numerical examples with three or more buyers and is proved for two buyers in Section
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4.4.1. In Section 4.4.2, we provide a numerical counterexample with two buyers where
the firm does not use the optimal selection policy and Conjecture 1 does not hold.

When considering the long-term problem, the firm must balance the current rev-
enue from the satisfied buyers against the loss in future demand from the dissatisfied
customers. The fact that the buyers have short memory suggests that the optimal
selection should depend more on how decisions affect the near future than on how
they affect the distant future. Intuitively, between two policies leading to different
satisfaction state vectors, the policy that leads to the state where the total demand
is stochastically larger should be preferable as far as the long-term average expected
profit of the firm is concerned.

The following proposition states that for any two active buyers ¢ and j competing
for one item, if ¢ has higher LVC and GDC than j, meaning that ¢ is more reactive
than j to quality-of-service changes, prioritizing ¢ over j leads to a satisfaction state
vector in which the total demand of both buyers is stochastically larger than the

respective demand in the state vector led to by prioritizing 7 over 7.

Proposition 4.3. For any two active buyers 1,5 € B, i # j, if vi > v; and 3; > 7;,
then d;(1) + d;(0) > d;(0) + d;(1).

The proof is in Appendix A. It is trivial to show that v, > v; and ¢;(1) > ¢;(1)
imply 7; > 7;; that is, if buyer ¢ has a higher LVC and visits the firm more frequently
when she is satisfied than j does, then i also has a higher GDC than j. Therefore,
prioritizing ¢ over j leads to a greater satisfaction state vector. If, in addition to
being more reactive to service changes, ¢ also has a higher revenue rate than j, then
intuitively the firm is better off prioritizing ¢ over j. This intuition is expressed in

the following conjecture.

Conjecture 2. For any two active buyers i,j € B, © # j, if r; > rj, v > 7, and

Vi = 74, then ui > u;‘

Conjecture 2 is a useful rule of thumb for businesses where the higher the revenue
rate of a buyer, the more important the buyer, the higher her service expectations,
and therefore the higher her LVC and GDC. For cases where the more frequent the
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buyer, the lower the price (revenue rate) she pays to the firm, conditions of Conjecture
2 do not hold, and buyer selection becomes more obscure.

In general, the optimal selection policy is not an index policy and cannot be
obtained in closed form. We can only track it down for special cases, hoping to gain
some intuition that can lead us to develop good heuristics. The following proposition
characterizes the optimal selection policy for the special case where the firm uses a
fized order quantity (FOQ) policy with FOQ equal to n — 1.

Proposition 4.4. If y(a) = n — 1, Va, the optimal buyer selection policy u* is an
index policy u® with index for buyer i given by:

Ty
1=y FL(n—2)

i€ B, (4.17)

Zi
The resulting mazimum average expected profit, denoted by II"~1*, is:

m'*=R—-R;,— (n—1)ec, (4.18)
where R and R; are given below:

R=3 el (4.19)

keB

R; = kl}qu(l)zj, where j = arg I]?ellrgl(zk) (4.20)

The proof is in Appendix A. It is based on recognizing that if y(a) =n — 1, Ve,
buyer selection matters only when all buyers are active. In this case, the question
is not who should be selected, but who should be assigned the lowest priority and
be left out. If buyer j has the lowest priority, she will become dissatisfied, and all
other buyers will be satisfied. Thereafter, 7 will not contribute to the firm’s revenue
until she becomes satisfied. For this to happen, the total demand of the other n — 1
buyers must not exceed n — 2. The term R — R; in (4.18) expresses the difference
between the total expected revenue of the firm if all buyers are always served, and

the lost revenue from buyer j every time she is not served—although active—because
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all other buyers are also active and j has the lowest priority.

From (4.17), z; is an increasing function of three terms: r;, ;, and F!,(n — 2).
The first term is the revenue from buyer ¢, if buyer 7 is served. The second is the loss
in the future demand of buyer 4, if buyer ¢ is not served. Both terms refer to buyer
1’s parameters. The last term is the type-1 service level of all other buyers when they
are satisfied, if buyer ¢ is served, i.e., it is the probability that the total demand of
the other n — 1 buyers is at most n — 2. From (4.3) and (4.4), this probability is
equal to 1 — [T, cp iy (1), This term couples the demand of buyer i to the demand
of all other buyers. Note that if ¢;(1) > ¢;(1), then F';(n —2) > F!;(n — 2), for
i # j. This means that by favoring a buyer with a higher ¢;(1), the firm reduces
the probability of stockout for the other buyers, thus increasing the chance of the
low-priority buyer being satisfied and contributing to profit. Proposition 4.4 leads to
the following property.

Corollary 4.2. Ifr; > r;, v; > v, and 7y; > 7, then z; > z;, 1 # J.

Corollary 4.2 confirms Conjecture 2 when y(a) = n — 1, Va. Note that the three
conditions that it sets are sufficient. This means that it is possible that z; > z; even
if not all these conditions are met. From (4.17), the necessary condition for z; > z;
is 11— 751 = (DQ)] > 151 = 3(1 = q;(VQ)], where Q = TTyep oy ae(L):

Index z; depends on the parameters of buyer i, the order quantity n — 1, and
the visit rates of all other buyers. It is therefore strongly coupled. As n — oo,

Fl.(n —2) — 0, so the limit of z; as n — oo, denoted by s;, becomes:

L i€B. (4.21)

Index s; augments the revenue rate r; by a factor of 1/(1 — +;). Unlike z; which
depends on the visit rates of all buyers, s; depends on the parameters of buyer ¢
only, so it is uncoupled, like r;. Therefore, increasing the number of buyers decreases
the coupling between them. Unlike r; which is myopic, s; is far-sighted because it
accounts for the loss in future demand. We refer to s; as the augmented revenue rate
and to the index policy that results from using s; as the augmented-revenue-greedy

policy u”°.
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4.4 The two-buyer problem

In this section, we characterize the optimal ordering and buyer selection policy for two
buyers, and we analyze and compare the performance of any arbitrary index policy

to that of the optimal selection policy.

4.4.1 Optimal policy

From Proposition 4.4, the optimal selection policy for two buyers, under the FOQ
policy y(a) = 1, Ve, is u?, where z; given by (4.17) for n = 2. The following theorem
states that the optimal ordering policy for two buyers is an FOQ policy, so when the

z

optimal FOQ is 1, the optimal selection policy is u?*; otherwise (when the optimal

FOQ is 0 or 2), buyer selection is not an issue.
Theorem 4.2. Forn =2 (B ={1,2}):

(a) The optimal buyer selection policy u* is an index policy u?, with index for buyer

1 given by:
T ri
2= i _ A . 1€ B, 4.22
1 —qi(1)  1-—pa(1)g(1) 422)
where (1) (0)
_ qi — g .
Bi=mi+v="—t—""t icB. 4.23
e ¢i(1)q: (1) ( )

(b) The optimal ordering policy y* is an FOQ policy. Assuming without loss generality
that z; > z;, 1 # j, the optimal FOQ), denoted by y*, and the resulting mazimum
average expected profit I are given in Table 4.1, where R and R; are defined in
(4.19) and (4.20).

Table 4.1: Optimal FOQ and resulting average expected profit for z; > z;, ¢ # j, and
n=2.

Region Condition y® IT
YO0 R;>R—c 0 0
Yl, Rj<min(R—cc) 1 R—-R;—c
Y2 R; >c 2 R—2c
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The proof is in Appendix A. The first expression for z; in (4.22) is the same as
the expression in (4.17) for n = 2, after noting that g;(1) = F*,(0); therefore, it
has the same interpretation as that expression. The second expression allows for a
different interpretation. It implies that z; is increasing in r; and [;, where (; is the
ratio of the drop of supplier i’s visit rate if she is active but not served, ¢;(1) — ¢:(0),
to the variance of her demand when she is satisfied, ¢;(1)g;(1) (note that ¢;(1)g;(1)
is maximized at ¢;(1) = 0.5). Therefore, prioritizing the buyers based on ; implies
favoring a buyer who is more reactive to quality-of-service changes and has a more

predictable visit behavior when satisfied.

Theorem 4.2 (b) confirms Conjecture 1. The conditions in Table 4.1 under which
each FOQ value is optimal when z; > z;, have the form of inequalities involving
the expected revenues R and R; defined in (4.19) and (4.20), respectively. These
conditions partition the (z;, z;, R, R;) space into three regions, denoted Y0, Y1;, and
Y2, where y* = 0, 1, and 2, respectively. The conditions imply that region Y1,
borders with YO and Y2, but YO and Y2 do not share a border. The interpretation of
the optimal FOQ policy is simple and intuitive. If [T%%*" > TI'%" then y* = 0 (region
YO0). If TI2*° > 1% then y* = 2 (region Y2). Otherwise, y° = 1 (region Y1;).
Figure 4.1 displays graphs of two indicative problem instances with different sets of
visit and deferral rates, showing the regions, projected onto the (r1,73) space, where

each FOQ value is optimal, under w*. In both instances, ¢ = 1. Note that in region

3.5 3.5

) 2

0L ol

0 iz 3.5 0 iz 3.5
q,(0) = 0.05,q,(1) = 0.5 q1(0) = 0.35,q,(1) = 0.45
q2(0) =0.1,9,(1) = 0.4 q2(0) =0.1,9,(1) = 0.7

Figure 4.1: Optimal FOQ policy under the optimal index policy w* for n =2 (¢ = 1).
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Y141, 21 > 2o, whereas in region Y1s, zo > z;. In the left graph, 5, > (s, so region
Y1, covers a part of the space between the lines z; = z5 and r; = ry, where buyer 1
has priority over 2 (because z; > z3) even though 7 < ry. The reverse is true in the

right graph, where region Y1, covers a part of the space where r; > rs.

4.4.2 Effect of the index on the optimal FOQ and the average
expected profit

In the previous section, we saw that for two buyers, the optimal buyer selection
policy is index policy w* and the optimal ordering policy is FOQ policy y*. In this
section, we examine how the performance of an arbitrary index policy u® compares
to that of w* and what the resulting optimal FOQ, y*, is. This investigation is of
interest because the result for n = 2 can be an indication of the outcome for n > 2,
where the optimal policy is not tractable and different heuristic index policies may be

considered. For two buyers, when y* = 0 or 2, buyer priority is irrelevant; therefore,

Table 4.2: Optimal FOQ and resulting average expected profit under w”; difference
in average expected profit under w* and u® when y* = 1, for z; > x;, z; < z;, © # J,

and n = 2. . .
Region Condition Area I IT — I

Y

Y0 R, <R—c<min(Rj,c) 0 Blue 0 R—R;,—c
1
2

xT

Y1, R; < Rj < mln(R —C, C) Gray R — Rj —C Rj — R;
Y2 R; <c< Rjand R > 2c Red R —2c c— R;

u” has the same optimal FOQ and average expected profit as w?, i.e., y* = y* and
1% = II. Policies u* and w* differ only when y* = 1 and the two policies prioritize
buyers in the reverse order. In this case, y* may be either 0, 1, or 2, and IT*%*" < II.
Table 4.2 displays y®, II*%", and II — II**" when y* = 1 and u® and w* prioritize
buyers in the reverse order.

Two index policies that are of particular interest are w” and u® because they
capture key buyer attributes (profitability and reactiveness) and arise in Lagrangian
relaxation approximations of the original problem, as we will see in Section 4.7.

Figures 4.2 and 4.3 display graphs for the same problem instances as those in
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0 = 3.5 0 " 3.5

g,(0) = 0.05,¢,(1) = 0.5 q,(0) = 0.35,¢,(1) = 0.45
q2(0) = 0.1,q,(1) = 0.4 q2(0) = 0.1,q,(1) = 0.7

Figure 4.2: Optimal FOQ policy under index policy u” for n =2 (¢ = 1).

3.5 3.5
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0 " 3.5 0 r 3.5
q,(0) = 0.05,g,(1) = 0.5 1(0) = 0.35,g,(1) = 0.45
q,(0) = 0.1,q9,(1) = 0.4 q2(0) = 0.1,q,(1) = 0.7

Figure 4.3: Optimal FOQ policy under index policy u® for n =2 (¢ = 1).

Figure 4.1, showing the regions, projected onto the (ry,ry) space, where different
FOQ values are optimal under u*, for z = r and x = s, respectively. Note that in
the right graph of both figures, regions YO and Y2 share a border, whereas under u*

in Figure 4.1, these regions do not communicate, as was pointed out earlier.

In both figures, the areas where u* outperforms u” are shown in color, as defined in
Table 4.2. These areas cover a strip between the lines z; = 25 and x; = x5 (1, = ry in
Figure 4.2 and s; = s in Figure 4.3) where u® and w* prioritize buyers in the reverse
order and y* = 1. In both figures, the areas where u* outperforms u” are shown in
color, as defined in Table 4.2. These areas cover a strip between the lines z; = 25 and

x1 = x9 (ry = ry in Figure 4.2 and s; = s in Figure 4.3) where u” and w? prioritize
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buyers in the reverse order and y* = 1. As a result of the suboptimality of u*, the
firm is unable to make a profit in the blue area, so it orders nothing (y* = 0), while
in the red area, it keeps both buyers satisfied at all times by overstocking (y* = 2).
This demonstrates how the selection policy can affect the optimal ordering policy. In

the gray area, the firm uses the right FOQ (y* = 1) but selects the wrong buyer.

In the above analysis, we restricted our search for the optimal ordering policy
to FOQ policies. In the proof of Theorem 4.2, we show that the invariance of the
optimal order quantity arises from the monotonicity property of y(a) which holds only
under the optimal index policy w®. That is, if a suboptimal index policy u* # u*
is used, then &’ > a does not imply that y*(a’) > y*(a), and therefore y* () is
not necessarily fixed. We explain this counterintuitive behavior with an example.
Consider a problem instance with ¢ =1, 1 = 1.1, ro = 1.05, ¢1(1) = 0.2, ¢;(0) = 0.1,
¢2(1) = 0.98, and ¢2(0) = 0.8. Note that r; > 79, 73 = 0.5 > 0.184 = 75, and
7 = 0.125 < 9 = #,. Suppose the firm uses the revenue-greedy policy u”, which
means that it prioritizes buyer 1. Numerically solving problem (4.12) under u", yields
the optimal ordering policy y" () shown for each state a = (a1, a2) in the transition
state diagram in Figure 4.4. The components ¢;(c;) of each transition probability
appear in green or red color depending on whether active buyer ¢ is selected or is left
out of service, respectively, in the corresponding transition. The components ¢;(a;)

of inactive buyers appear in black. Self-transitions are omitted.

y'(1L0) =0

q1(0)q2(0)
y (01 =1
Figure 4.4: State transition diagram (omitting self-transitions) corresponding to the

optimal ordering policy y"(a) under the revenue-greedy policy u”, for a two-buyer
example with r; > 79, v1 > ¥, and 4, < 7s.
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4.5 Current revenue vs. loss in future demand

In the previous section, we presented the optimal ordering and buyer selection policy
for two buyers. Generalizing this analysis to more buyers, however, is impossible.
To gain insight into the optimal policy for more than two buyers, in this section, we
analyze the optimal policy for an example with three buyers, which we compute by

numerically solving the optimality equation (4.10).

The parameters of the example are: B={1,2,3},c=1,7r =13,y =125, 13 =
1.2, (1) = q2(1) = 0.66, ¢1(0) = ¢2(0) = 0.33, g3(1) = 0.93, and ¢3(0) = 0.46. Note
that 71 > ro > rg and, from (4.1) and (4.2), 1 =1 =13 =05and 3 =J =1<7=
~s3. Figure 4.5 shows the state transition diagram corresponding to the optimal policy.
The values of the optimal ordering policy y*(a) and the maximum average expected
profit, denoted by G*(c), computed as G*(a) = > ;e o3 ria[y; (o, y" (), d)] —
cy(a), are shown next to each state & = (o, g, v3). The optimal buyer selection
policy u* (e, y*(ax), d) is implied by the transition probabilities. As in Figure 4.4, each
component ¢; of each transition probability appears in green or red color depending on
whether active buyer i is selected or is left out of service in the respective transition.
For notational simplicity, the dependence of y* and G* on a and of ¢; on «; is
omitted. From Figure 4.5, we observe that y*(a) = 1, # (1,1,1), and y*(1,1,1) =
2, confirming Conjecture 1. We also observe that buyer 1 is always prioritized over
buyer 2, because both buyers have the same visit rates, and hence the same LVC and
GDC, but r; > 79. In general, however, u* depends on «, y, and the realization of
d; therefore, it is not an index policy. More specifically, if the ending state after d is
realized is one where two buyers are satisfied and one buyer is dissatisfied, henceforth
referred to as a good state, the optimal selection policy is revenue-greedy and hence
myopic. This means that the firm opts for state (1,1,0) then (1,0,1) and lastly
(0,1, 1), despite the fact that G*(0,1,1) > G*(1,0,1) > G*(1,1,0). The transitions
that lead to states (1,1,0) and (1,0, 1) are indicated with blue arrows. On the other
hand, if the ending state is one where one buyer is satisfied and two buyers are
dissatisfied, henceforth referred to as a bad state, the optimal selection policy is ;-

greedy and hence far-sighted. This means that the firm opts for state (0,0,1) and
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G*=0.167 G* =0.009

Figure 4.5: State transition diagram (omitting self-transitions) corresponding to the
optimal ordering and buyer selection policy, y* and u*, for a three-buyer example
with r1 > 1y > 13,71 =72 =73 and 31 = 72 < 3.

then states (1,0,0) and (0, 1,0). The transitions into state (0,0, 1) are indicated with
orange arrows. If the only option is between the last two states, then the firm opts
for (1,0,0) because it always prioritizes buyer 1 over 2, as was mentioned earlier.
The sole transition into state (1,0,0) is indicated with a green arrow. States (0, 1,0)
and (0,0,0) are transient and hence omitted. To better understand how the optimal
selection policy works, consider the situation where the initial state is (1,0,1). If
buyers 2 and 3 are active and 1 is inactive, the firm will end up in a good state, no
matter which buyer it selects. Under this demand scenario, the firm uses a revenue-
greedy policy seeking to maximize the current revenue, so it selects buyer 2 over 3
and ends up in state (1,1,0). If, on the other hand, buyers 1 and 3 are active and
buyer 2 is inactive, the firm will end up in a bad state, no matter which buyer it
selects. In this scenario, the firm uses a 7;-greedy policy seeking to maximize future

demand, so it selects buyer 3 over 1 and ends up in state (0,0, 1).
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4.6 Lagrangian relaxation

As was mentioned at the end of Section 4.2, to solve the optimality equation (4.10),
we can decompose it into two subproblems: Subproblem A given by (4.11) and Sub-
problem B given by (4.12). Solving Subproblem A exactly is intractable because of
capacity constraint (4.5) which couples the selection decisions across buyers. If it
were not for this constraint, each buyer could be analyzed independently. As a re-
sult, Subproblem A fits the definition of a weakly coupled DP problem Adelman and
Mersereau (2013); Bertsimas and Misi¢ (2016) and is amenable to decomposition via

relaxation.

In this section, we consider a Lagrangian relaxation of (4.11) that is obtained by
relaxing the coupling constraint (4.5) and adding the penalty term A (y(ar) — >, 1)
to the objective function, where A > 0 is the Lagrange multiplier or penalty price for
violating (4.5). After rearranging terms, the relaxed problem becomes:

Y+ VN a) = E +(A =) y(a), (4.24)

max {Z (ri — Nu; + VN®(a, d, u))}

ueld(d) ppre

Ud) ={ue{0,1}" :u; < d;, i € B}.

The term A (y(a) — >, zu;) that has been added to (4.11) is non-negative for
policies satisfying (4.5). This implies that IT¥* < [1¥*, and hence II¥* is an upper
bound for IT**. Note that II¥* depends on y(«) because of the last term in the r.h.s.

of (4.24). To remove this dependence, we define:
I =1 — (A — ¢) y(a), (4.25)

so that (4.24) can be written as:

I + VN a) =E

max {Z (ri — Nu; + VN®(a, d, u))}] , Vau. (4.26)

uel(d) pre

The advantage of Lagrangian relaxation is that for any fixed A, DP (4.26) can
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be decomposed into the sum of n buyer-specific DP problems that can be solved

independently, as stated in the following Proposition.

Proposition 4.5. For any y(a) >0, a € {0,1}", and X\ > 0:

) = 3V (@), (4.27)

€8

=Y "1, (4.28)

i€B

where ‘A/Z-A(Czi) and ﬂ;\ solve the following buyer-specific DP:

T U () — RS AV 12X 07 — d)a. ;
I+ VA as) LE,?LEL?@){(” Mg + VA + (1 dz)az)}},zeB, (4.29)

The proof is in Appendix A. The first term in the maximization of (4.29) is the
revenue generated by buyer ¢ when she is active. It is non-negative if r; > A and

negative if r; < A, leading to a simple solution provided by the following proposition.

Proposition 4.6. The solution of (4.29), denoted by u}(d;), i € B, is given by:

uMd;) = dilip>zy, 1€ B. (4.30)
VAL = (1 — A)*&, VA0) =0, i € B, (4.31)
) = (r; = N (1), i € B. (4.32)

The proof is in Appendix A. The optimal buyer selection policy given by (4.30)
depends on the choice of the Lagrange multiplier A\. As was mentioned earlier, [ is
an upper bound for I1¥*. To obtain the tightest bound, we must solve the Lagrangian

dual problem Topaloglu (2009); Brown and Smith (2020):

min v, (4.33)



4.7. INDEX POLICIES 111

Proposition 4.7. The solution of (4.33) is:

-----

A" =13+, where i* = = arg,_max { Zq(k } (4.34)

where (i) indicates the index of the buyer with the i™ highest revenue rate, and by

convention 141y = 0.

The proof is in Appendix A. Expression (4.34) implies that \* is the (%)™ highest
revenue rate, where ¢* is the first buyer whose demand is not covered by y(a) if the
firm prioritizes buyers in descending order of their revenue rates and replaces their
demands by their expected value in the satisfied state. Figure 4.6 displays a graph of
A s y(a). If yla) = Zk 14k (1), for some 4, then X\* € [r(;,7;—1)]. In this case,
to break the tie, we set \* = .

/’l*

(1) 4

-1
O]

Ti+1)

| \
UON
: - i

i+1

’ q(l)(l) Z q0 (1) Z qa (1) Z a0 (1) Z UGIS) Z 90 ()

Figure 4.6: Optimal Lagrange multiplier A* vs. y(«).

y(@)

4.7 Index policies

The buyer selection policy given by (4.30) is not feasible because it violates the
linking constraint (4.5) when ). pd;il;>y > y(a). In this section, we consider
three heuristic index policies that respect constraint (4.5). Following Brown and

Smith (2020), the index in each policy approximates the value added to the firm by
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selecting buyer ¢ when she is active, given by:
v, =1 + W,(l) — WZ(()), 1€ 87 (435)

where W;(ay) is some buyer-specific approximation of the value function, e.g., V*(a;).

4.7.1 Whittle index policy

The first index policy that we consider is the Whittle index policy, where W;(«;) is
the value function ‘A/z-’\(ozi) in (4.29), for a given buyer-specific Lagrange multiplier
A = w;. The Whittle index is the value of w; which, if given to the firm as a subsidy,
makes it indifferent between selecting vs. not selecting buyer i Whittle (1988). From
(4.35), w; satisfies:

w; =i + VU (1) = V2 (0), i € B.

Substituting V;*#(1) and V;**(0) from (4.31) into the above expression yields:

w; =1 + (ri — w;) T —L— i € B.
The solution of the above equation is:

Therefore, the Whittle index of buyer ¢ is r;, and the Whittle index policy coincides
with the revenue-greedy policy, as is also shown in Adelman and Mersereau (2013) in

a similar setting.

4.7.2 Lagrangian index policy

The second index policy that we consider is the Lagrangian index policy, where W;(«a;)
is the value function V() in (4.29) for a given Lagrange multiplier A which is

common for all buyers Brown and Smith (2020). From (4.35), the Lagrangian index,
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denoted by [; satisfies:
i =i+ V(1) = V0), i € B
Substituting V(1) and VA(0) from (4.31) yields:

h:n+%n—AﬁT%%yieB (4.37)

The above index can also be viewed as a greedy index w.r.t. f/i’\(a,-) that is derived

by solving the following optimization problem Adelman and Mersereau (2013):

E
d

max iU + XA/Z-A w; + (1 —d;) oy )
ueld (y(a),d) {Z ( ( ) )}]

1€eB

The above problem is equivalent to a 0-1 knapsack problem that is solved by
selecting buyers in descending order of indices [; given by (4.37). Although we can
use any Lagrange multiplier A in (4.37), we expect that values leading to tighter
performance bounds result in better approximate value functions and generate better
heuristics. For this reason, we use the optimal multiplier \* from (4.34) to obtain the

optimal Lagrangian index:

hnzﬁw+0m—ﬁmﬁftquea (4.38)
where (i) indicates the index of the buyer with the i*® highest revenue rate. Based on
(4.38), the buyers are divided into two groups: those with the ¢* — 1 highest revenue
rates and those with the n —i* + 1 lowest revenue rates. The index for each buyer in
the first group depends on her goodwill and is constructed by augmenting her revenue
rate r(;y by a term that is proportional to ;) — 7+ and v/ (1 — 7). The index for
each buyer in the second group is r(;). Note that lZ‘i) depends on y(a), because from
(4.34), ©* depends on y(av); therefore, it is weakly coupled. Figure 4.7 shows a plot
of If;) in (4.38) vs. (i).

A question that comes to mind is, how does the optimal Lagrangian index policy
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l*
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Tiv_1y 1%
. (L 1):l(i*) = T(i*)

liren) =T
§ L O )
1) @ -1 @) @+1) ()

Customer index (i)

Figure 4.7: Optimal Lagrangian index ;) vs. buyer index (i) using the optimal La-
grange multiplier \*.

compare to the optimal buyer selection policy? To address this question, we compute
lz‘i) for the FOQ policy y(a) = n — 1, Ve, for which we know from Proposition 4.4
that the optimal selection policy is index policy w* where the optimal index z; is

given by (4.17) and, in the case of two buyers, (4.22).

Corollary 4.3. If y(a) = n — 1, Ve, the optimal Lagrangian index for buyer i is
given by:

- S(); if 2k dw(l) <n—1, 3 p
@) re + (Ti — T(n ) @) ; otherwise, reS (4.39)
(@) @ = Tm)) 1= )

where (i) indicates the index of the buyer with the i™" highest revenue rate. For
n=2(B=1{1,2}), (4.39) is equivalent to:
Sy, 4 D+g(1) <1, |
=4 "0 fa) +a) icB. (4.40)
@), otherwise,

The proof is in Appendix A. By comparing ;) in (4.39) and 2 in (4.17) it is
obvious that the two indices differ, although both are increasing in rgy and ). It
can be shown that If;) < 2 if D5, qu(1) > n — 1 and ) /rey < v + (1 —
V@)/ res iy @(1); otherwise, If;) > z(;). For n = 2, expression (4.40) states that
if the total demand is relatively low, lz;.) = s(;); otherwise, ZZ‘Z.) = r¢. This behavior
echoes the observed behavior of the optimal policy in Section 4.5, that when the

ending state is bad (i.e., with low expected demand), the optimal selection focuses on
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maximizing future demand; otherwise, it focuses on maximizing the current revenue.
Moreover, as was mentioned earlier, la) depends on y(a), so it is weakly-coupled. This
implies that the Lagrangian index policy has some of the properties of the optimal
policy, which the Whittle index policy does not have. We, therefore, expect the former

policy to outperform the latter.

4.7.3 Active-constraint index policy

The Whittle and Langrangian indices are derived from (4.35), where the buyer-specific
approximation of the value function W;(«;) is VA (ay) in (4.29). For the Whittle index,
the penalty price w; for violating capacity constraint (4.5) is discriminatory (buyer-
specific) and hence ignores capacity. For the Lagrangian index, the penalty price \*
is uniform (common for all buyers). In both cases, this price is applied whenever
the firm selects buyer ¢ (u; = 1), even if constraint (4.5) is not active, i.e., even if
there is enough capacity to serve buyer ¢ without depriving another buyer of service.
This makes capacity more expensive than it really is and introduces a bias in the
approximation. To remedy this, we consider an alternative index policy, which we
refer to as the active-constraint index policy, where a discriminatory penalty price
is applied only when the capacity constraint is active, i.e., when D_; > y(a). The

active-constraint index, denoted by 6;, is defined as:

6: =1+ V(1) = V(0), i € B, (441)

(2

where the buyer-specific value function V% (o) solves the following the DP:

% + V(o) = E [ mae { (1 = 6,110yt i+ Vi i+ (1 - d»ai)}] . (442)
ui €U; (a;
for i € B. DP (4.42) is the outcome of a stronger relaxation compared to DP

(4.29), at the expense of requiring more computations, as its solution depends on the
distribution of D_;, F_;(y).
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Proposition 4.8. The solution of DP (4.42) is:

Vi) =g ij(yE;L— i)1)’ V%(0) =0, i € B, (4.43)
% = riq;(1) L=yl =1 - g (4.44)

=3 Fa(y(e)—1) °

The resulting active-constraint index defined in (4.41) is:

T 1=y FL(y(e) — 1)

0;(cx) ,i€B. (4.45)

The proof is in Appendix A. Note that 6;(c) is strongly coupled, since it depends
on both y(a) and the vector of satisfaction states of all buyers except i (recall that
D_; is a function of ay, k € B\ {i}). From (4.45), 6;() has a striking resemblance
to z; in (4.17). The buyer-specific terms r; and ~; are identical to those in z;, and the
term F_;(y(a) — 1) is similar to the term F',(n — 2). It represents the type-I service
level of all other buyers, if buyer i is served, i.e., it is the probability that the total
demand of the other n — 1 buyers is at most y(a) — 1. Note that if ¢;(cw) > ¢;(¢;),
then F_;(y(a) — 1) > F_;(y(ax) — 1), for ¢ # j. This means that by favoring a
buyer with a higher ¢;(«), the firm reduces the probability of stockout for the other
buyers, thus increasing the chance of ending up in a greater satisfaction state vector
and leading to more well-balanced satisfaction and service levels among the buyers.
This term gives the active-constraint index policy a significant advantage over policies
that use uncoupled indices, such as the revenue-greedy policy w" with index r; and
the augmented-revenue-greedy policy w® with index s; = r;/(1 — ~;). These policies
rely on a strict prioritization of the buyers which is independent of their satisfaction
states and can lead to very unbalanced satisfaction and service levels that are biased

towards the high-priority buyers.

Note that the term in the numerator of (4.45) refers to the current revenue of the
firm, while the term in the denominator refers to the drop in future demand. The lower
the vector of satisfaction states oy, k € B\ {i}, the higher F__;(y(a)—1), and therefore

the higher the impact of the loss in future demand compared to that of the current
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revenue in the computation of §;(c). As in the case of the Lagrangian index policy,
this behavior reflects the observed behavior of the optimal policy in Section 4.5 that
when the ending state has low expected demand, the optimal selection focuses on the
loss in future demand; otherwise, it focuses on the current revenue. An important
difference, however, is that in the active-constraint index policy, the emphasis on
the current revenue or future demand changes dynamically based on the satisfaction
state vector, whereas, in the Lagrangian index policy, it is static. As was noted in the
previous paragraph, this constitutes a significant advantage of the active-constraint
index policy.

Finally, the following property further reinforces our intuition that the active-
constraint index policy is expected to outperform the Whittle and Lagrangian index

policies.

Corollary 4.4. If y(a) = n — 1, Va, the active-constraint index policy is identical

to the optimal buyer selection policy w* given by Proposition 4.4.

The proof is in Appendix A. Corollary 4.4 implies that if y(a) = n — 1, Ve, the
active-constraint index policy is optimal. This is a very attractive property that none

of the other two Lagrangian-relaxation-based index policies have.

4.8 Numerical results

We complement our analytical results with a computational study in which we nu-
merically solve equation (4.12) for the three index policies considered in Section 4.7,
for a large number of problem instances with five and ten buyers. Our aim is to
explore and compare the performance of these policies, reinforce some of our earlier
insights, and make new observations. For the five-buyer instances, we also evaluate

the index and the FOQ policies against the optimal policy.

4.8.1 Evaluation of index policies

To investigate the performance of the optimal policy and compare it to that of the

three Largangian relaxation-based index policies, we numerically solve 250 instances
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of a problem with five buyers (n = 5, B = {1,2,3,4,5}) under all policies. In each
instance, we set ¢ = 1 and randomly generate the visit rates within the following
ranges: ¢;(0) € (0.005,0.77) and ¢;(1) € (¢;(0),0.96), i € B. We also generate
five revenue rate values in the interval (1.15,1.25), sort them in decreasing order,
and assign them to the buyers so that r; > r;q, i € {1,2,3,4}, to facilitate the
presentation of the buyer-specific results.

For each instance, we numerically solve equation (4.10) for the optimal policy,
and equation (4.12) for the three index policies, using value iteration. The solution
of (4.10) yields the optimal buyer selection policy u* = u¥* = u*(«,y*,d), the
optimal ordering policy y* = y** = y*(aju*), and the corresponding maximum
average expected profit IT = IT*%". The solution of (4.12), for each index policy u?,
x = r,1*,0, yields the optimal ordering policy y**" = y*(a|u®) and the corresponding
average expected profit IT*%".

For each instance and for each policy u, we also determine the average expected
optimal order quantity, denoted by **, and the average expected demand and service

*,U

rates of buyer i, denoted by d;"™ and @;*%, i € B, respectively. To compute these
measures, we run, on the side of the main value iteration, additional value iterations
of the following DP equations, where in each iteration we use the decisions y(a) and

u(a, y(a),d) that result from the maximization step in the main iteration:

A" + V(@) = B [di + V¥ (@(a, u(a,y(@), ), d))], Var, i € B,
@ + V(@) = E [u(a,y(a), d) + Vi (B(e, u(e, y(a), d),d))] , Ve, i€ B.

Finally, we calculate the average expected fill rate for each buyer i, denoted by
S defined as the average expected probability that buyer i is served given that she
demands service, as follows:

(4.46)

Figures 4.8 and 4.9 show plots of the average expected profit, order quantity, and
fill rate for buyers 1, 3, and 5, under the four considered policies, for the first 100
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instances. In each plot, the instances are sorted in ascending order of the values of

the optimal policy, for ease of exposition.
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Figure 4.8: Average expected profit and order quantity under different policies for
100 instances of a problem with five buyers.
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Figure 4.9: Average expected fill rate for buyers 1, 3, and 5 under different policies
for 100 instances of a problem with five buyers.

From Figure 4.8, we observe that the average expected profit and order quan-
tity values of the active-constraint index policy are extremely close to the respective
values of the optimal policy. For the Lagrangian and Whittle index policies, these
performance measures deviate visibly from their optimal policy counterparts.

Figure 4.9 shows that in general, S > S3™* > S2*". This is expected, since in

all the instances r; > r3 > r5, whereas the visit rates are generated similarly for all



120 CHAPTER 4. ORDERING AND BUYER SELECTION POLICIES

buyers. In more than half, about half, and less than half of the instances, S7™*", S5,

and S;’u* are equal to one. The average expected fill rate of the active-constraint
index policy is equal to or quite close to the respective value of the optimal policy,
whereas, in the Lagrangian and Whittle index policies, it deviates substantially from
the optimal. This deviation is mostly positive for buyer 1, both positive and negative
for buyer 3, and negative for buyer 5. This is expected, because the Whittle index
policy is revenue-greedy, assigning the highest priority to buyer 1 and the lowest to
buyer 5, and the Lagrangian index policy is often identical to or close to a revenue-
greedy policy.

Table 4.3 shows the sample mean and standard deviation, over all 250 instances,
of the average expected profit, order quantity, and fill rates of the optimal policy
(column 2). It also shows the sample mean and standard deviation of the percent
difference of the average expected profit, order quantity, and fill rates of the three

index policies from the respective values of the optimal policy (columns 3-5).

Table 4.3: Average performance (sample mean and standard deviation) of all policies,
for 250 instances of a five-buyer problem.

Active-constraint index Lagrangian index Whittle index
0 I

Performance Opt u=1u u=u u=u"

measure u=u" (% diff from Opt) (% diff from Opt) (% diff from Opt)
e (0.33, 0.11) (:0.28, 0.51) ((14.02, 14.75) _ (-15.36, 16.66)
T (2.81, 0.62) (-0.34, 1.46) (-7.18, 19.16) (-9.66, 19.37)
S (0.81, 0.29) (0.76, 18.00) (59.22, 117.61)  (60.86, 120.52)
S (0.75, 0.31) (-0.50, 14.65 ) (58.20, 110.41)  (58.80, 114.24)
S (0.76, 0.32) (1.09, 18.66) (23.53, 84.75) (21.36, 84.28)
5 (0.68, 0.34) (1.00, 17.46) (-11.76, 55.07)  (-15.63, 56.05)
S (0.58, 0.35) (5.35, 22.19) (-28.81, 52.84)  (-30.59, 53.63)

We observe that the mean average expected profit and order quantity of the op-
timal policy is 0.33 and 2.81, respectively, while the mean average expected fill rate
ranges from 0.58 for buyer 5 to 0.81 for buyer 1. This suggests that the optimal
selection policy tries to keep the fill rates relatively balanced. The average expected
profit and order quantity of the active-constraint index policy decrease by only 0.28%
and 0.34% from the respective values in the optimal policy, indicating that the active-

constraint index policy is near-optimal. The average expected fill rate increases for
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all buyers, except buyer 2, for whom it slightly decreases. The increase in the fill
rates for almost all buyers under a suboptimal policy seems counter-intuitive at first.
However, it can be explained by the fact that the suboptimal selection can cause the
average demand of the buyers to drop more than their average service rate does, i.e.,
the denominator of S; in (4.46) can decrease more than the numerator for all buyers.

The mean percent differences of the performance measures of the Lagrangian and
Whittle index policies from the respective values of the optimal policy are significantly
larger, with the Whittle index policy having the worst performance. Its mean average
expected profit and order quantity are 15.36% and 9.66% lower than the respective
values of the optimal policy, and its mean average expected fill rate ranges from
60.86% higher for buyer 1 to 30.59% lower for buyer 5 than the respective values of
the optimal policy. The fact that S7"* < 100%, even though buyer 1 always has
top priority, is because, in some satisfaction states, the order quantity is zero, as was
discussed in the two-buyer example in Section 4.4.2.

The mean value of §** of all the index policies is lower than the respective value
of the optimal policy (this can also be seen from Figure 4.8). This suggests that the
firm, by selecting buyers inefficiently, loses demand and is forced to cut its orders to

adapt to the lower demand.

4.8.2 Evaluation of FOQ policy

In the previous section, we computed the optimal ordering policy for the optimal
and the three index buyer selection policies considered in Section 4.7. A question
that arises is, how well does the best FOQ policy perform compared to the optimal
ordering policy? This question is of interest in situations where the firm must allocate
a fixed capacity instead of a variable order quantity Adelman and Mersereau (2013);
Klein and Kolb (2015); so, designing this capacity is a concern.

To address this question, we devise a procedure in which we fix y(a) = yr, Ve,
and numerically solve equation (4.11) for the optimal buyer selection policy, and
equation (4.12) without the maximization step for the three index policies, using

value iteration. We run this procedure for each yr € By and for each of the 250
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Table 4.4: Percent difference (sample mean and standard deviation) of the average
performance of the optimal FOQ policy (under all selection policies) from the optimal
policy, for 250 instances of a five-buyer problem.

Performance Opt Active-constraint index Lagrangian index Whittle index
measure u=u" u=u’ u=u u=u"

100 x (% — II**7)/I** (-0.47, 0.90) (-0.72, 1.14) (-15.32, 16.30)  (-16.91, 18.54)

100 x (yg* —y*™") /g™ (0.42, 7.75) (0.55, 8.0) (-7.36, 21.09)  (-10.12, 21.40)

instances considered earlier. For each instance and each buyer selection policy u, we
select the optimal value of yr that yields the highest average expected profit, denoted
by yz*.

Table 4.4 shows the sample mean and standard deviation, over all 250 instances, of
the percent difference of the average expected profit and optimal FOQ of the optimal
and the three index selection policies from the average expected profit and the average
order quantity of the optimal policy.

We observe that the mean drop in the average expected profit of the optimal
FOQ policy under the optimal selection policy w* is only 0.47% and that y3* is
only 0.42% higher than **" on average. The mean percent differences of the average
expected profit and order quantity of the FOQ policy under any index policy from
the respective values of the optimal policy also change very modestly compared to
the corresponding differences in Table 4.3. For example, compare the 15.32% profit
loss and 7.36% drop in the average order quantity of the Lagrange index policy using
the best FOQ to the 14.02% profit loss and 7.18% drop in the average order quantity
of the same index policy using optimal ordering.

These results suggest that the FOQ policy can be fairly efficient if ypz is chosen
optimally. If the wrong value of yr is used, however, the average expected profit can
drop significantly. Figure 4.10 shows plots of the percent drop in the average expected
profit of the optimal selection policy using an FOQ policy y(a) = yr, Ve from the
respective value of the optimal policy, for different yz values, for seven representative
instances.

The plots show that if the wrong yr is used, the drop in average expected profit
can be extremely high. For the particular set of 250 instances considered, yi* =
0,1,2,3,4,5 in 0% 2%, 26%, 61%, 11%, and 0% of the instances, respectively. In
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Figure 4.10: Percent profit loss of the FOQ policy under the optimal selection, for
different FOQ values, for seven representative instances of a problem with five buyers.

almost all instances, the value of yr that yields the smallest average expected profit
1s 5.

4.8.3 Effect of number of buyers and revenue rates

To investigate the effect of the number of buyers on the performance of the different
policies considered, we numerically solve 150 instances of a problem with ten buyers
(n =10, B = {1,...,10}). In each instance, we set ¢ = 1 and randomly generate
the rest of the parameters within the following ranges: ¢;(0) € (0.005,0.89), ¢;(1) €
(¢:(0),0.99), and r; € (1.15,1.25), i € B. Numerically finding the optimal policy
for this problem is computationally intractable, because the number of computations
that must be performed in each value iteration is 65.71 million, as was mentioned
in Section ??7. Hence, we limit our study to the three Lagrangian relaxation-derived
index policies.

Figure 4.11 shows plots of the average expected profit and order quantity under
the three index policies, for the first 100 instances. In each plot, the instances are
sorted in ascending order of the values of the active-constraint index policy, for ease
of exposition. These plots show that the average expected profit and order quantity
under the Lagrangian and Whittle index policies deviate visibly from the respective
values under the active-constraint policy, as was the case in the five-buyer problem.

Table 4.5 shows the sample mean and standard deviation, over all 150 instances, of
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Figure 4.11: Average expected profit and order quantity under different policies for
100 instances of a problem with ten buyers.

the average expected profit and order quantity of the active-constraint index policy in
column 2. Columns 3—4 show the sample mean and standard deviation of the percent
difference of the average expected profit and order quantity of the Lagrangian and

Whittle index policies from the respective values of the active-constraint policy.

Table 4.5: Average performance (sample mean and standard deviation) of all policies,
for 150 instances of a ten-buyer problem.

Lagrangian index Whittle index
Performance Active-constraint index u=u" (% diff u=u" (% diff
measure u = u’ from Active-constraint index) from Active-constraint index)
T (1.30, 0.15) (-7.23, 5.46) (-8.21, 6.25)
g (7.45, 0.58) (-4.56, 7.51) (-5.96, 7.04)

We observe that the mean average expected profit and order quantity of the active-
constraint index policy is 1.30 and 7.45, respectively. The mean decrease in perfor-
mance of the Lagrangian and Whittle index policies compared to the active-constraint
policy is sizable but not as high as the respective drop in the five-buyer problem. As
in the five-buyer problem, the Whittle index policy has the worst performance, with
a mean average expected profit and order quantity which are 8.21% and 5.96% lower,
respectively, than the respective values of the active-constraint policy.

Finally, to investigate the effect of the revenue rates on the performance of the
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three index policies, we numerically solve 150 instances of a problem with ten buy-
ers, where in each instance, we set ¢ = 1, and we randomly generate the rest of the
parameters in the following ranges: r; € (1.5,1.7), Vi € B, ¢;(0) € (0.1,0.7) and
¢;(1) € (¢:(0),1), i € B. That is, the visit rates are slightly less differentiated between
buyers than in the previous set of instances, while the revenue rates are more differ-
entiated and higher than in the previous set of instances. The idea is to increase the
weight of the current revenue relative to that of the loss in future demand.

For this set of instances, the mean average expected profit of the active-constraint
index policy is 3.37, i.e., much higher than the respective value in the previous set of
instances (1.30). Moreover, the mean percent difference of the average expected profit
of the Lagrangian and Whittle index policies from the respective value of the active-
constraint index policy is 2.24% and 5.07%, respectively, i.e., much smaller than the
respective differences in the previous set of instances (7.23% and 8.21%). This is
expected because, in the new set of instances, the revenue rates are much higher
and more differentiated than those in the previous set. The higher and the more
differentiated the revenue rates, the better the performance of the myopic revenue-
greedy policy (i.e., the Whittle index policy) and the Lagrangian index policy, which,

as was mentioned earlier, is often identical to or close to the revenue-greedy policy.

4.9 Discussion and future research

The reactions of heterogeneous buyers to stockouts give rise to a complicated set of
trade-offs in inventory and buyer portfolio management. Firms often overlook these
trade-offs and deal with the adverse effect of stockouts on buyer goodwill with a
penalty cost or a service level constraint, ignoring the effect of goodwill changes on
future demand. Moreover, they typically prioritize buyers based on their past sales
or margins, ignoring the long-term importance of each buyer. Ordering and buyer
selection decisions necessitate more sophisticated practical approaches that carefully
balance the acquisition cost, the current revenue from the satisfied buyers, and the
loss in future demand from the dissatisfied buyers.

Our model can be extended in several directions. One direction is to consider
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markets where unused items are not perishable but are carried over to the next period
at a cost, and/or unserved buyers incur a penalty cost in addition to the loss in future
demand.

Another direction is to consider ways in which the firm can mitigate the stockout
risk, for example by including an expensive backup supplier to cover some of the
excess demand, or by incorporating personalized dynamic pricing to expedite the

return of dissatisfied buyers.



Chapter 5
Thesis Summary

Designing inventory control policies that account for the adverse effect of stockouts on
buyer (or customer) goodwill and future demand has long been a challenging issue for
OR/OM researchers and practitioners. To address this issue, we develop and analyze
three multi-period models of a supplier(s) selling items to the buyer(s) whose demand

is driven by past service.

In Chapter 2, we develop a multiperiod model of a supplier selling items to
a buyer who rates the supplier based on the history of her service, measured in
terms of in-stock/out-of-stock incidents. We show that while the myopic policy is a
basestock policy with rating-dependent basestock levels, the optimal policy for the
infinite-horizon problem partitions the inventory space in several order-up-to and do-
not-order intervals, for each rating. The optimal decision—order up to the next point
or do not order—depends on whether ordering reduces the risk of downrating the
supplier—lowering her expected future profits—enough to offset the resulting increase
in ordering and inventory holding costs. This tradeoff depends on the inventory level
and the buyer demand density function. We derive and evaluate bounds on the
optimal policy and found properties of this policy. We show that a basestock policy
is optimal and analytically tractable for cases where the buyer has random demand
but short memory of service (two ratings), and constant demand but long memory
(more than two ratings). If the buyer has random demand and long memory of

service, a basestock policy is optimal under a certain condition on the demand and
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other parameters. We use the service-driven model to impute the fixed stockout cost
reflecting the loss of goodwill due to a stockout in a newsvendor model that posits
such a cost. Our results show that using the imputed stockout cost is quite efficient,
thus providing a justification for the use of the newsvendor model. However, using
an arbitrary, fixed stockout cost can significantly reduce the supplier’s profits.

In Chapter 3, we develop a model of a repeat buyer (she) sharing her patronage
among two heterogeneous newsvendor-type suppliers over an infinite horizon. To
enjoy the best service advantage, the buyer plays one supplier (him) against the other
by rewarding product availability with repurchase (loyalty) and punishing stockouts
with switching (disloyalty) in the next period.

Our analytical and numerical results provide new insight into these decisions.
They suggest that the main concern of the suppliers under competition is to maintain
the buyer’s loyalty because losing it as a result of a stockout means foregoing profits for
many periods following the stockout. This concern forces each supplier to significantly
increase his active basestock level above his myopic level, reducing the frequency of
stockouts and the role of the backorder cost.

The benefits of supplier competition for the buyer are completely wiped out if
the suppliers decide to cooperate. In this case, the supplier with the lower myopic
profit lowers his active basestock level below his myopic level—possibly down to
zero—ceding his demand share to the more profitable supplier who sets his active
basestock level above his myopic level but still below his basestock level at equilibrium
under competition. The buyer can recover the high fill rate that she can enjoy under
competition if she charges the cooperating suppliers an adjustment penalty backorder
rate when products are unavailable on demand. This rate can be excessively high to
be of practical use if the suppliers’ margin-to-interest rate is high.

Finally, most of the results for two suppliers extend to multiple suppliers if the
buyer uses a round-robin policy where she switches from one supplier to the next on
a circular basis after each stockout.

In Chapter 4, we develop a newsvendor model of a firm with a number of het-
erogeneous buyers that captures the effect that the joint ordering and buyer selection

decisions have on the visit dynamics of the buyers and the long-term average profit
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of the firm.

We show that for two buyers, the optimal selection policy is index-based where
the index of each buyer is increasing in her revenue rate, the relative loss in her future
demand if she is not served, and the type-I service level of the other buyer if she is
served. This implies favoring buyers who are profitable, reactive to quality-of-service
changes, and predictable in their visit behavior when satisfied.

We demonstrate that for more buyers, the optimal selection policy is not index-
based but may depend on the demand realization. Our results suggest that if the
ex-post satisfaction state is high, the firm should select buyers to maximize current
revenues; otherwise, it should select buyers to maximize future demand.

Our analysis suggests that under optimal selection, the optimal order quantity is
non-decreasing in the satisfaction state of the buyers. For two buyers, this implies
that effectively an FOQ policy is optimal in steady state. We demonstrate that if
buyers are not selected optimally, it may the firm may be better off ordering fewer
items in a higher satisfaction state than in a lower state, to drive buyer satisfaction
to more profitable states which the suboptimal selection policy fails to do.

For the Lagrangian index policy that we develop based on the relaxed problem,
we manage to derive the “best” Lagrangian price in closed form as the solution to
the Lagrangian dual problem, allowing us to obtain the tightest bound of the original
problem.

The active-constraint index that we develop resonates very well with the observed
optimal policy, leading to relatively well-balanced satisfaction states and service levels
among the buyers. It augments the revenue rate of each buyer by a factor that neatly
separates into two terms: the drop in the buyers’ visit rate if she is not served, and
the type-I service level of the other buyers if she is served. The higher the last term,
the smaller the expected ex-post satisfaction state of the buyers, and the higher the
relative weight of the future demand over the current revenue. Our numerical results

show that the active-constraint index policy is near-optimal.



Appendix A

Chapter 2 Supplemental Material

Intuition behind the optimal policy

To gain intuition behind the optimal policy given by (2.28), consider Figure A.1
which shows graphs of two different demand density functions f(w) and four different
initial inventory levels g, To, z1, and Z; in different areas of the demand space.
The difference between the two graphs is that in (a), f(w) increases sharply and
decreases smoothly, whereas in (b), it increases and decreases smoothly. For each
inventory level, the shaded area of width e represents the reduction in the probability
of a stockout—hence in the risk of downgrading the supplier—if the supplier orders a
small quantity e. For zy € R in graph (a) and x; € R} in graph (b), this reduction
is significant, because by ordering €, the supplier would eliminate a large area under
the part of f(w) that corresponds to backorders, defined as w > zg and w > xy,
respectively. Thus, in these cases, it would be worth it for her to order at least e,
despite the resulting higher ordering and inventory holding costs. For 7, € R and
71 € R! in graph (b), the reduction is minor. In these cases, it would not be worth
ordering more items. These examples suggest that the number of order-up-to-points
beyond S2, n, depends on the shape of f(w), and should be bounded by the number

of its local maxima.

130



131

< - AI\ 7 < + -
Order Do not Order Do not Order Do not
up to = order upto order L oupto . order

Figure A.1: Reduction in the probability that the supplier stocks out, if she orders a
small quantity e, for different demand density functions and initial inventory levels.

Proof of Proposition 2.1. Let S be the global maximizer of A,(y). From ex-
pressions (2.11)-(2.12), we get S"¥ = argmin,{Lq(y)}, where

Lolw) = Ko+ Kol [ (0= ) aF @)l + 00 0~ 1) ~ 2] Lo |
v

The first two derivatives of L, (y) are L (y) = K1 — K2(¢aF' (y)1{y>01 + Liy<oy) and
L (y) = Kaqaf(y)ly>0y. Clearly, L7 (y) > 0, implying that L, (y) is convex, hence
S is its unique minimizer. From (2.11), this further means that A”(y) < 0, hence
Aq(y) is concave and S is its unique maximizer. Therefore, the optimal inventory
control policy is a basestock policy given by (2.16). If y < 0, then L/ (y) < 0, since
K, — Ky < 0 from (2.9). This implies that SI*¥ > 0. Moreover, from the first-order
condition, ST = argmin, {¢.F'(y) < K1/K,} , which can be rewritten as (2.17). [

Proof of Proposition 2.2. Proof of (2.18). The proof of (2.18) follows immedi-
ately from (2.10) for I1,(z), and from the definition V,(z), once we note that y > x
implies that as + — 0o, y — oo; therefore, lim,_,,, — Ky = —ooc.

Proof of (2.20)-(2.21). Consider a nominal and a perturbed sample path that
start from a nominal and a perturbed initial state, (z¢, o) and (xj, o), respectively,
where x5 = z9 and aj > ag. From (2.5), oy > ¢a,- Suppose that the nominal path
follows the optimal inventory control policy, while the perturbed path follows the
nominal path by setting y; = y;, where y; > x;. Clearly, the policy followed by the
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perturbed path is suboptimal. We will show that in each period, the perturbed path:
(i) can always set y; = y;, and (ii) is always at least as profitable as the nominal
sample path, implying that 11, (z() = Il (20) > Ila, (o).

To create the two paths, in each period ¢, generate a common random number
2z € [0,1] and use it to generate the demand seen by the supplier in the two paths,
denoted by d; and dj}, respectively. There are three cases to consider. Case i: If
0 < 2zt < Gy, then dy = d; = wy; Case ii: if ¢o, < 2 < qoy, then d; = 0 and d} = wy;
Case iii: if ¢, < 2; < 1, then d; = d, = 0, where w; is the buyer demand in period ¢.

Start by setting y{, = yo. This is feasible since x;; = xy. Then, generate w, from
f(+) and zy and use it to generate dy and dj,, respectively, based on the rule described
above.

Case i: If 29 < qu,, then dy = dy = wo, v1 = yo — dy = Yo — wp, and | =
Yo — diy = Yo — wo = 1. Moreover, y; > z1. Setting y; = y; is feasible since 2} = ;.

There are two subcases. Subcase i-a: If wy > y| = yo, then oy = ap — 04, and

o) = ap — 5;6. From (2.4) and the assumption af > ap, it follows that o} > «a;. If

ap = 1 and «af = 2, then from (2.4), o) = a; = 1. Subcase i-b: If wy < y; = yo,
then oy = ag + 67 and o) = af + 5;“6. From (2.4) and the assumption o > vy, it
follows that oy > ay. If oy = M — 1 and oy = M, then o) = a; = M.

Case iii: If 20 > qq, then dy = do = 0, 21 = yo — do = Yo, and 7} = yy — dy =
Yo = x1. Since dy = 0, y; = yo. Again, setting y; = y; is feasible since 2| = x;. Also,
a; = o and o) = af, where o} > ay, since o > «p.

In both cases i and iii, the perturbed and nominal paths are identical. Thus, both
paths give rise to the same profits for the supplier. Also, the ratings in both paths
either maintain their order or become identical, in which case, they coincide from
that point on.

Case ii: If g, < 20 < gy, then dy = 0, dy = wo, 1 = yo — do = Yo > o,
and 2} = y, —dy = yo — wy < x1. Moreover, o = g, y1 = 1 = Yo, and the
supplier’s profit in the nominal path is —hyg (loss). In the perturbed path, there
are two subcases. Subcase ii-a: If wy > y;, = yo, the supplier receives a revenue
of ryp and ends up with inventory z} = yo — wo < 0, incurring a backorder cost of

b(wo — yp). Considering also the revenue r (z})” = r (wy — yo) for the backordered
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demand that she will receive in the next period at a discount of 3, her total current
revenue is 1y + Or (wyg — yo). She can set y; = y; = yp if she orders wy > 0 at
a cost of Bcwy, when rolled back into the current period. Therefore, her profit is
Yo + Br (wo — yo) — b(wo — o) — Bewo = [(1 = B)r+blyo + (Bp — blwo > —hyo
(profit in the nominal path), since by assumption Sp—b > 0. Moreover, o} = a6—6;6.
From (2.4) and the assumption of > ag = «y, it follows that o) > «a;. Note that
if o = ap + 1, then from (2.4), of = a3 = ap. Subcase ii-b: If wy, < y, the
supplier receives a revenue of rwy, ends up with inventory =} = yj —dj = yo —wo > 0,
incurring an inventory holding cost of & (yo — wp). She can set y; = y1 = yo if she
orders wy > 0 at a cost of fcwy, when rolled back into the current period. Thus,
her profit is rwg — Bcwy — h (yo — wo) = (r — fc+ h) wy — hyo > —hyo (profit in the
nominal path). Moreover, o = af, + (5;:6. From (2.4) and the assumption af, > ay, it
follows that o} > «;. From the above analysis, in both subcases, y; = vy, o} > ay,
and the perturbed sample path has a higher profit than the nominal path.
Repeating the same argument for the next period and all the periods thereafter, we
can see that in each period ¢, y; = y; and o > a4, and the profit of the perturbed path
is greater than or equal to that of the nominal path. Almost surely, at some point,
the rating of the perturbed path will coincide with the rating of the nominal path
and the two paths will be identical from then on. Therefore, the total profit of the
perturbed sample path is greater than or equal to the total profit of the nominal path,
which implies that Il (7) = Tl (7o) > o, (7). Clearly, from (2.10), Vi, (75) =
Vay (w0) > Vo, (0), too.

Proof of (2.22)-(2.23). A lower bound for I1,(z) can be constructed by considering
the myopic policy given by Proposition 2.1, or any other feasible policy. Here, we
consider an order-up-to policy with rating-dependent order-up-to points S, where,
similarly to SJ', S, is non-decreasing in «. This property guarantees that if zy < S,,,
then yo = Sa,, and more generally, y; = S,,,t > 0. As a result, {ay,t >0} is a

discrete-time Markov chain with state-space A and non-zero transition probabilities
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Do, that are independent of z; and are given as follows:

Pao1 = Gl (Sa),1 <@ <M, paoi1 = quF(Sa),1 <a<M—1,

i (A1)
Pa,a = QOc + an(Sa)l{azl} + chF<So¢)1{a:M}a 1 S 07 S M.

The resulting discounted expected profit, which is denoted by I (z), satisfies I\, () =
c(z)™ + p(x)” + VE(z), where VI (x) is the value function corresponding to the con-
sidered policy and is a lower bound for V,(x). For x < S,, V.E(z) = VE(S,), where
VL(S,) is obtained by solving the following equation:

VE(S,) = +62pw/ L (Sw),a € A (A.2)

From the monotonicity of ¢, and S,, it follows that A,(S,) and V.E(S,) are also
increasing in a. Letting V¥ and A denote the vectors (V/*(S1),...,Vi7(Su)), and
(A1(S1), ..., Ap(Sar)), respectively, and letting P denote transition probability ma-
trix of the discrete-time Markov chain defined above, A.2 can be written in matrix
form as V¥ = A + SPVE. The solution of this equation is V¥ = (I — gP) ™"

where I is the identity matrix. Note that P is a tridiagonal matrix and so is I — SP.
The inverse of the latter matrix can be obtained using a formula developed by Us-
mani (1994) for computing the inverse of tridiagonal matrices based on their principal

minors. Applying that formula to our problem, yields:

a—1
V) = 3 (595 (5) B2 TT () + A5 et
) LT TIm
(A.3)
+ Z (Bj aA T]Oé 1%0,]4-1 HqF Sk)>7
j=a+1 M k=i
where 7;,7 = 0,..., M, are the principal minors of I — P and satisfy the recurrence
equations:
=1 m=1=08(1-qF(5)), (A4)

;= (1 — Bq; — 5Qz'F(Si)1{z‘=M}) Ni—1 — 52%’]5(51)%7117 (Szel) Ni—2,



135

for e =2,..., M. Similarly, p;,i =1,..., M + 1, are given by:

evir =1, oy =1—0(1—quF(Su)),

] ) (A.5)
@i = (1 =BG — BGF(S)1jim1y)pie1 — B2qin1 F(Sis1) G F (S) iso,

fori = M —1,...,1. If xg > S,,, setting y» = S,, may not be feasible. In this
case, the transition probabilities from one rating to another depend on the current
inventory level z, making the computation of V.*(z) too demanding and outside the
scope of this paper. To bypass this difficulty, we set aside the quantity x — S, and
hold it as unused inventory forever, at a holding cost of h(x —S,) /(1 — ). Thus,
for any initial inventory level z, the lower bound of V,(z) is given by VI (z) =

—h(z—S,)" /(1= pB)+VE(S,), where VE(S,) is given by (A.3).

Note that the lower bound developed in Lemma 2.1 in Robinson (2016) for a
similar model is a special case of our bound where S, = 0, € A. In this case,
VE(0) can be found from (A.3), after replacing F(0) = 1 — F(0) = 0, A,(0) =
(PB = 1) qab s = [Ty (1 = B+ Barlysny), and ¢; = [[or,(1 — B+ Barlye=1y), i € A,
from (A.4) and (A.5), as follows:

VEO) = (B-0)0>_ 57 [[ae/ (1— B+ aBlisy) .o € A.
j=1

k=j

This bound is positive, implying (2.19), but smaller than or equal to VI (S™), be-
cause when z < 52, the optimal policy is to order up to S2, where S2 > 5™ as was

mentioned earlier.

An upper bound for I1,,(xy) can be constructed by considering the ideal scenario
under which definitions (2.4) are replaced by 0} = 1{a,<a and 0, = 0. From (2.3),
this implies that a; remains unchanged with probability q,,, as before, and increases
by one unit with probability q,,, irrespectively of whether the supplier satisfies the de-
mand or not. Hence, under this scenario, {a;,t > 0} is decoupled from the inventory
control policy of the supplier, and the optimal inventory control policy is the myopic
policy given by Proposition 2.1. The resulting discounted expected profit, which is
denoted by IT%(x), satisfies [T1%(z) = c(x) " +p(x)” + V.Y (z), where V.V (x) is the value
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function corresponding to the myopic policy under the ideal scenario and is an upper
bound for V,,(x). For x < S™. VU(z) = VU (S™), where V.V (S™) is obtained by
solving a system of equations identical to that in (A.2) with V.V (-) instead of V. (-).
The solution of that system is given by an expression identical to (A.3) with V.Y (S/™)
instead of V.F(S;). After replacing F(S;) = F(oo) = 1, A(S;) = A(S]"),j € A,
mi = [Ty (1= B+ Barlecrry), and ¢; = [ToL; (1 — B+ Balgeerry) i = 1,..., M,
from (A.4) and (A.5), respectively, V.V (S™) is given as follows:

VU (§m) = i 5j—aAj (S;”y) ﬁ l , (A.6)
ce 4G oL = Bt @Bl

J=a

If 2o > SI', then y, # S, t > 0, and we face the same difficulty in computing V.7 ()
as in the case of V.*(z), mentioned earlier. To circumvent this difficulty, we simply
discard quantity x — SJ¥ at no cost; therefore, the starting inventory effectively is
S™y and hence V.Y (z) = V.V (S™), as was the case for x < S™v.

Note that Robinson (2016) in Lemma 2.1 developed an upper bound for a simi-
lar model under the assumption that constraint y; > x; is relaxed and the supplier
is allowed to order after the demand has been observed. Obviously, in this case,
the optimal policy is to set y, = d;, Vt, which is equivalent to a make-to-order pol-
icy with known demand. Moreover, the supplier does not incur any holding and
backorder costs and only receives revenue for the items sold. Therefore, her pe-
riod profit is A, (d) = qupf, which is larger than the profit A, (S7%¥) that we have
considered. The resulting upper bound for the value function is looser than our

bound, and from (A.6), the upper bound of Robinson (2016) can be written as
Vi (0) = pb Zj]\/ia <3j_a [[_oa/ (1—B+ qkﬁl{k<M})> : O

Proof of Lemma 2.1. The proof is similar to that of Lemma 2 in Robinson (2016).

After reinstating ¢, expression (2.15), for y, < 0, becomes:

Ha 1) = ~Lou 0+ 8 o | [ Varoag, o= w0 dF (0] + Vo )} A)

Consider a restricted policy where y; > 0 for t > 7, for some period 7. Clearly, the
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discounted expected profit over an infinite horizon under the restricted policy is less
than or equal to the corresponding profit under the optimal policy, but as 7 — oo, the
two profits become equal, since the discounted expected profit is bounded. Therefore,
it suffices to show that the optimal policy y; satisfies y; > 0 for a finite 7 and then
let 7 — oo. Under the restricted policy, y; > 0 for ¢ > 7, by definition. To extend
the result to periods ¢t < 7, we use backward induction. Assume that y;, > 0,5 > 1.
If y, < 0, then x4y < 0, from (2.2); therefore, 2,11 < y;,,. Using (2.14), equation
(A.7) becomes,

Hol) = ~Kagp = Kalao6 = ) + Ban | [Kat, s,
0

FHy g (5 DVF ()] + o[ Kot 0+ Ho_pe ()11

The derivative of the above expression is H!, (y;) = Ky — K7. The r.h.s. of the above
expression is positive and equal to (1 — 3) p+b from (2.7), yielding the desired result.
O

Proof of Proposition 2.3. First, we show that S? < S7. From (2.31), S" =
arg min, s )+ { H;,(y) < 0} . From (2.33) and (2.29), a sufficient condition for H,(y) <
0is Hy(y) = —Li,(y) + Bgaf(y) [Va+5;<0) - Va—é;(o)} < 0, where L) (y) = K; —

K3qo F(y), from (2.27). Substituting Ly, (y), replacing V,_ 5+(0) — V,_s-(0) with its
upper bound A, from (2.25), rearranging terms, and using the above expression for

SP. yields the upper bound of S! given by expression (2.35).

Next, we show that S° > S™. For a = M, there are two cases to consider. In
case 1, S, > 0 and H}, (SY,) =0, i.e., SY, satisfies the first-order condition. In case
2, 5%, =0 and H},(0) < 0. From (2.33) and (2.31), we have,

Hy; (S3r) = =Ly (Sir) + Baarf (S3r) [Var(0) = Var—1(0)] = 0

and,
(1 = Baqnr) Hy(0) = =Ly (0) + Baar f(0) [Var(0) — Var—1(0)] < 0,
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for the two cases, respectively. From (2.20), Bqaf (+) [Var(0) — Var—1(0)] > 0. There-
fore, the above two expressions imply that L), (5%,) > 0 and L,(0) > 0, respectively.
Given that L”(y) = K2qaf(y) > 0 from (2.27), this further implies that S}}Y < S9,.
For o = M — 1, there are three cases to consider. In case 1, 0 < §9, | < 8%, and
Hjy 1 (S%.1) =0, ie., SY,_, satisfies the first-order condition. In case 2, S5, | =0
and Hj, ,(0) < 0. For these cases, the proof that S}}Y, < SY,_, is the same as in
the corresponding cases for « = M. In case 3, S, ;, > S%,. From (2.17) and (2.5),
St < Sy Given that SY, > S})Y, as we showed earlier for a = M, it immediately
follows that S%,_; > S} ,. The above arguments for = M — 1 hold similarly for

all the remaining ratings a € {1, M — 2}. O

Proof of Proposition 2.4. We use induction. For the one-period problem, V,(z) =
max,>, {Aa(y)}, by (2.14). As was shown in Proposition 2.1, for this problem,
A/ (y) < 0, which implies that V”(z) < 0. Assuming that the proposition has been
proved for t — 1 periods, we will show that it holds for ¢ periods. This is equivalent
to showing that if V/(z) < 0,2 > 0, then H!(y) < 0,y > 0, too. From (2.34), it
suffices to show that —L(y) + Bqaf'(y) [Vayst (0) = V,_s-(0)] < 0, because all the
other terms in (2.34) are negative. More specifically, the terms containing V(-) are
negative because of the induction hypothesis, and the term V! +5$(0+) is negative
from (2.29). Substituting L (y) = Kaqof(y) > 0 from (2.27) into the above inequal-
ity and rearranging terms yields f'(y)/f(y) < Ka/B [V, 55 (0) = V,_s-(0)]. If (2.37)

holds, the last inequality holds immediately, because V, s+ (0) =V, _;-(0) < A, from

«

(2.24). O

Proof of Proposition 2.6. To prove (i), write (2.32), for o = 1,2, after replacing
L,(y) from (2.27) and rearranging terms the function G, (y) is equal to,
Ha(y) — 5@&‘/@(?/) yK

o =~ KB+ ﬁ[/oy Vipsr (9 = w)dF (w) + Vi(0)F(y)].

From (2.30), the function G,(y) is either equal to (H,(y) — C})/qs or (Ha(y)(1 —
BGa) — C?)/qa, where CL C? are constants, for a = 1,2, respectively. 9"G,(y)/0y"
is either equal to 0"H,(y)/0y™ or (1 — BG.)0"H.(y)/0y", where 1 — 3G, > 0. This
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implies that G,(y) has the same shape as H,(y). Therefore, both functions attain
all their extrema at the same values of y. This includes the global maximizer, S°,
ie., SY = argmax, {H,(y)} = argmax, {Ga(y)} . Therefore, to show that S9 > S7,
it suffices to show that argmax, {Ga(y)} > argmax, {Gi(y)}. Define AV,(y) =
Vorsr (¥) = Vigst (y) = Vayss (y) — Va(y). Clearly, from (2.20), AV2(y) = 0 (note that
it M =2, AVh(y) =0). Ga(y) — G1(y) can now be written as follows

Galy) — Cr(y) = [(@s — a1) Kr Jaras] y + B / " AV, (y — w) dF (w).

Clearly, this difference is a positive non-decreasing function in y, implying that
arg max, {Gs(y)} > arg max, {G:1(y)}.

To prove (ii), write (2.14) for « = 1,2 and M = 2, after replacing H,(y) from
(2.32), as follows:

Va<0) = K3Qa9 - La (Sg) + 5(]04 [‘/2<0>F (Sg) + %(O)F (Sg)} + ﬁCYOzVa(O)'

After some manipulations, the above expression can be specialized for a = 1,2 as

follows:
Vi(0) = K3q:0 — Ly (SY) + Bar F' (S7) [Va(0) — V1(0)] + BVA(0),

and
V2(0) = K3qo8 — Lo (S9) — B2 F (S3) [Va(0) — V1(0)] + 8V4(0).

Subtracting the first from the second equation and rearranging terms yields
Va(0) = V1(0) = (Ks3(q2 — q1)0 — [La(S2) — La(S)D(1 = B+ Bla2F(S2) + a1 F(SY)])

From (2.33), H, (S3) = —Li, (S2) + Baaf (S3) [V2(0) = Vi(0)] = 0, where L, (57) =
K, — Kyqo F (S2), from (2.27). Note that L}(0) > L,(0). There are three cases to

consider:
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Case 1. SY = SY =0 and S? does not satisfy first-order conditions, i.e.,

Ly(0) > Baaf(0) [V2(0) — Vi(0)]
which can be rewritten as

(K1 + K2q2) (1 = BG2) > B2 f(0) (K5 — K3) (g2 — 1) 0

after replacing L5(0) = K7 — Kaqe and V5(0) — V4(0) from the expression above for
SY =59 =0.

Case 2. SY satisfies first-order conditions, i.e.,

Ly (83) = Baaf () [V2(0) = V4 (0)]

and SY = 0 and does not satisfy first-order conditions, i.e.,
LL1(0) > Baf(0) [V2(0) = VA(0)],
which can be rewritten Ky — Koq1 > Sq1 f(0) [V2(0) — V4(0)], where
V2(0) = V1(0) = (Ks (g2 — 1) 0 — [L2 (S3) — Kaqu0]) / (1= B+ B F (S3))
Case 3. Sy and S) satisfy first-order conditions, i.e.,
L, (Sa) = Baaf (Sa) [V2(0) = Vi(0)] ,a = 1,2

Replacing L, (S%) and V5(0) — V4(0) from above yields (2.41). O

Proof of Theorem 2.1. First, we will derive expressions for the average expected
profit under each of the three candidate policies, denoted by IIp,, II Py and I Pa1ar €
{2,..., M}, and then we will compare their values. Under policy P;, the supplier’s
rating is absorbed in the lowest value 1, where she orders up to S{ < 6. From (2.44),
Ip, can be written as p, = Ay (S9) = (p —b) 10 + [(b+ h) ¢1 — h] SV. Under Py,
the supplier’s rating is absorbed in M, where she orders up to S, = 6. From (2.44),
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I1p,, can be written as:
1:IPM = Ay (6) = [(p + h) qm — h] 0. (A8)

Finally, under P, 14, € {2,..., M}, the supplier’s rating is absorbed in the set
{a—1,a}. When in «, she orders up to S? < 6, and when in o — 1, she orders up
to SY_, = 0. In fact, @ — 1 and « are the states of a two-dimensional Markov chain,
with ¢,_1 and ¢, being the transition probabilities from o — 1 to a and from « to
a — 1, respectively. The steady-state probabilities of & — 1 and « are ¢,/ (qa—1 + ¢o)
and ¢a_1/ (qa—1 + Ga), respectively. From (2.44), Ip can be written as:

a—1,a

My, y, =Moot (6) — 2 4 A, (89) L

[e%

Ga—1 + qa Ga—1 + e
[(p + h) Qa—1 — h] Qa9 + [(p - b) QOce + ([b + h] Qo — h) Sg] qo—1
do-1 + o

(A.9)

Next, we will show that P, and P,_j ., € {2,..., M}, can be candidate overall
optimal policies only if S) = 0 and S° = 0, respectively. First, we show this for
Pi. Note that 9lp, /0S? = (b+ h)q — h. The optimal value of S, denoted by
5% depends on the sign of Ollp, /0SY. If ¢ < h/ (b+ h), then S% = 0; otherwise,
S0 — 9=, If we replace SO with 60—, we get IIp, < [(p+h)q —h]O < f[pM, since
qu > 1. Therefore, the option that policy P is overall optimal (in the sense that
p > ﬁpM) and S = 0~ is not feasible. Policy P, may be overall optimal only if
¢ < h/ (b+ h), which implies that S = 0. IIp, for S? = 0 becomes:

Ip, = (p—b) @b (A.10)

The result for P,_1 4, € {2,..., M}, is shown similarly. Namely, the optimal value
of SY, denoted by S%*, depends on the sign of

aﬁPa—l,a/asg = [(b + h’) Qo — h] QOc—l/ (Q(x—l + Qa) .

If g, < h/(b+ h), then S% = 0; otherwise, S%* = 6. If we replace S° with 6~ in
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(A.9), after some manipulations, we get Ilp, | . < [(p+ h) 2¢a—19a/ (¢a—1 + ¢a) — 2] 6
< [(p+ h) g, — h|6. Noting that qy; > qa, it follows that ﬁpail,a < IIp,,. Therefore,
the option that policy Py_14,a € {2,..., M}, is overall optimal (in the sense that
ﬂpa717a > Ip,,) and S% = @~ is not feasible. Policy P,_; o may be overall optimal
only if g, < h/ (b+ h), which implies that S%* = 0. In this case, if we replace SY with
zero in (A.9), we get:

[(2p — b+ h) a1 — h] q.0

I = . A1l
s da—1 + o ( )

Moreover, P,_;, may be overall optimal if p < ﬁpa_lya, which from (A.10) and
(A.11) implies that (p —b)¢1 < [2p — b+ h) ¢a—1 — P ¢a/ (qa—1 + Ga). From the as-
sumption Bp > b, it follows that for § = 1, the Lh.s. of the above inequality is positive.
Therefore, the r.h.s. must also be positive, which means that Aq,_1 > h, where X is
defined as A = 2p — b+ h. Note that Aq, > Aga_1 > h from (2.5).

Next, we compare policies P,_1 o and P, 441, for 2 < o < M — 1, by considering

the difference II Paati —1I Pa1.- From (A.11), this difference can be written as follows:

{(Aga — 1) (Go—1 + @a) dat1 — AMda=1 — 1) (¢a + Gat1) da} 0
(Q(xfl + QQ) (qu + QOHrl)

HPa,cH—l - HPa—l,a -

The denominator in the r.h.s. of the above expression is positive. Therefore, the sign of

the difference IT Paai1 —TIIp,_, . depends on the sign of the expression in the braces mul-

1,

tiplying # in the numerator. For this expression, we have: (Ago — 1) (¢a—1 + ¢a) Gor1—
(Ma-1 =) (@ + Got1) o = AE(Gat1 — Ga1) = Mda1Gar1 — ¢2) > h[da(dasr —
Ga-1) = (Ga=19a+1 — @2)] = h[G@a+1(da — Ga=1)(das1 + ¢a)] > 0, where the first inequal-
ity follows from Ag, > h and the second inequality follows from (2.5). Therefore,
i,
timal, besides policies P, and Py, is policy Pa—1,a. The resulting average expected
profit from (A.11) is:

> f[pafm. This further implies that the only policy that may be overall op-

sa+1

[(QP —b+ h) qym—1 — h] qnl
dm-1+t 9m .

I—[PMA,M -

(A.12)
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To summarize, policies P; and Py;_1 ) may be overall optimal if ¢; < h/ (b+ h)
and qy < h/(b+ h), respectively. Policy Py is overall optimal if either gy, >
h/ (b+ h)or gy < b/ (b+ k) but Ip, > lp, and p,, > Ip,, ,,,. From (A.8),(A.10),
and (A.12), the last two conditions can be written as qu; > h/(p + h) + q1(p —
)/(p+h) and gyt > (are1/9a0) B/ (9 B) + a1 (p — ) / (p + B). Multiplying both
sides of the second condition with (p + h) gy, this condition can be rewritten as
(p+h)g3, — (p—b) qu-19u — hqar—1 > 0. The Lh.s. of this inequality is a quadratic

function in ¢y, with a positive and a negative solution. Using the positive solution,
we get gy > {(p —b) g —i-\/[(p —b) gy’ +4(p+h) thl] /12 (p+ h)]. Simi-

larly, P; is overall optimal if ¢; < h/ (b+ h), ﬁpl > ﬁpM, and f[p1 > ﬁprl}M. From
(A.8),(A.10), and (A.12) these last two conditions can be written as

h +q1(p—b)
p+h p+h

qm <

and
(p - b) q19nm—1

p—b) (g1 —q)+@+h)gu_1 —h

qum <
(

Proof of Proposition 2.7. Expression (2.47) can be written as
L(y) = (K1y + K>B(y) + bgF(y)) Lyz0) + (K1y + Kalg(0 — y) — qy] + bg) Ly<oy-

The first and second derivatives of the above expression are

L'(y) = (K1 — K2qF (y) — baf(y)1soy + (K1 — K2) 1<y

and,
L"(y) = (Kaqf(y) — baf' (v)) 1501

Clearly, L'(y) < 0,y < 0, since K1 — Ky < 0 from (2.9). This implies that all
the minima of L(y) are non-negative. For A(y),y > 0, to be concave, we need
A'(y) <0,y > 0, or equivalently L”(y) > 0,y > 0, which can be rewritten as (2.48). If
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(2.48) holds, the unique minimizer of L(y) is given by S™ = argmin -, {L/(y) > 0},
which can be written as (2.49). O

Proof of Proposition 2.8. Consider the SD model under a basestock policy with
a single basestock level S for all ratings, ie., S, = S,a € A. Under this policy,

{at,t > 0} is a discrete-time birth-death process with state-space A and non-zero
transition probabilities paa1 = ¢ F (S),1 < & < M, paar1 = @F (9),1 < a <

M —1, and pao = Ga + ¢ F (5) Lja=1} + @ F (S) L{a=m}, 1 < o < M. Using standard

Markov chain analysis, the steady-state probabilities for this process, 1, (5), are:

™ (S) @ ()

ma (S) = da

,a=2,....M

and,

G en @ (5)&1] -

o

T (S) = [

where ® (S) = F (S) /F (S). Using the above expressions,

Q9= Ta(Sta=m(S)n Y ®(S)"",

acA a€A

which leads to (2.53). Similarly, we have that

I(S) = 7a(S) Ao (S) = [K30 — KaB ()] Y 7a (S) ga — K15 D 7a(S),

a€A acA acA
which leads to (2.52). The global maximizer of II(S), S*, is given by (2.50). Once
S* is found, ¢ (S*) is given by (2.53).

To find the imputed b* in the FS model, we must solve (2.49) for b, after setting
S™ = S* and ¢ = ¢ (S*). There are two cases to consider: S* > 0 and S* = 0. If
S* > 0, then b* is obtained from (2.49) which leads to the top expression in (2.51).
If S* =0, F(0)=1— F(0) =0, hence m; = 1, 7, = 0, > 1, and §(0) = ¢;. From
(2.49), b belongs to the interval given by the bottom expression in (2.51), where the
right end of that interval is necessarily positive, i.e., K1 — ¢ Ky > 0. To see this,
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note that if S* = 0, then IT'(0) = ¢(0) (K5 — K5) 0 + ¢1 K5 — K;. The first term in
this expression is positive because K3 — Ky > 0 from (2.9) and ¢’ (S) > 0, because
G (S) is increasing in S. If ¢; Ky — K7 > 0, then ﬁ’(O) > 0. However, this cannot be
true, because it would imply that S* > 0. Therefore, ¢; Ky — K7 < 0, or equivalently,
Ky —qKy; > 0. ]



Appendix B

Chapter 3 Supplemental Material

Proof of Theorem 3.1. Suppose that supplier ¢ is highly ranked but fails to fully
meet the buyer’s demand. Then, his inventory level becomes negative, and his ranking
turns low. In this case, it is optimal for him to order just enough to satisfy the
backordered demand and end up with zero inventory. Ordering less would result in
him not fully satisfying the backordered demand and receiving the full margin for
it. Ordering more would result in him holding costly inventory that would remain
unused because the buyer never selects the low-ranking supplier. Once supplier ¢’s
inventory level reaches zero, it is optimal to keep it at zero as long as his ranking

remains low. Therefore, y(2) = 0.

Now suppose that supplier j is highly ranked but fails to fully meet the buyer’s
demand. Then, his inventory level becomes negative, and his ranking turns low,
while the inventory level of supplier ¢ remains at zero and his ranking turns high. In
this case, it is optimal for supplier ¢ to order some quantity s; > 0, ending up with
inventory s;, in anticipation of the buyer’s demand in the next period; s; is, therefore,
a target inventory level. If the demand is greater than s;, supplier ¢ will fail to fully
meet the demand, his inventory level will become negative, and his ranking will turn
low. If the demand is less than or equal to s;, he will fully meet the demand, his
inventory level will drop below s;, and his ranking will remain high. In this case, it

is optimal for him to order up to the target level s; again. Therefore, y(1) = s;.

146
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Based on the above, the ranking vector (o, a;) of the two suppliers is a discrete-
time Markov chain with two states: (1,2) and (2,1). When (o, ;) = (1,2), customer
i orders up to s;, and his expected profit is given by (3.4), because he receives the
buyer’s demand. Customer j orders up to zero, and his expected profit is zero,
because he does not get any demand. When (o, ;) = (2, 1), the reverse is true. The
probability of switching from (1,2) to (2, 1) is F(s;), while the probability of switching
from (2,1) to (1,2) is F'(s;). It is trivial to show that the steady-state probabilities of
states (1,2) and (1,2) are F'(s;)/[F(s;)+F (s:)] and F(s;)/[F (s;)+F(s;)], respectively,
which implies (3.10). O

Proof of Proposition 3.1. From (3.4)—(3.8), Gi(s;) > 0, Gi(s;) > 0, for 0 <
s; < 8™ and Gy(s;) < 0, Gi(s;) < 0, for s; > sM. From (3.13), this means that

1 0

Oll;(si,85)/0s; > 0, for 0 < s; < s7, and Ol,(s;,s;)/0s; < 0, for s; > sM, which

1 7

implies (3.17). O

Proof of Theorem 3.2. (i) The sign of ¢;(s;, s;) given by (3.14) determines the sign
of OlL;(s;, s;)/0si given by (3.13), since the term F(s;)/[F(s;) + F(s;)]?* in (3.13) is
positive. As mentioned in the discussion following Proposition 3.1, OlI;(s;, s;)/0s; >
0, for 0 < 's; < s, and OlL;(s;, s;)/0s; < 0, for s; > sM | implying that ¢;(s;, s;) > 0,
for 0 < s; < s, and ¢;(s;,s;) < 0, for s; > sM. If condition (3.18) holds, then
®i(si, ;) is decreasing in s;, for s; € (s, sM). As a result, the first-order condition
O11;(s;, s§)/0s; = 0, which reduces to ¢;(s;,s;) = 0, has a unique solution, s!(s;),
satisfying (3.19).

(ii) The derivative of sf(s;) with respect to s; is given by (3.20) by using implicit
differentiation. The denominator of the right-hand-side of (3.20) is given by (3.18)
and is negative; therefore, the sign of Jsf(s;)/0s; is determined by the sign of the
numerator, which is given by (3.16). This quantity is positive for s; € (s, sM),
because G(s;) < 0, for s; > s™; therefore, 0s}(s;)/0s; > 0.

(iii) The derivative of sf(s;) with respect to any parameter g can be similarly
computed as 0si(s;)/0q = —[0¢i(s}(s}),5;)/0q]/[0¢i(si(s;),57)/0s;]. The denomi-
nator is again given by (3.18), so it is negative; therefore, the sign of 0s(s;)/0q
is determined by the sign of the numerator, which from (3.14) is 0¢;(s;,s;)/0q =
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(F(sj) + F(s;)) 0Gi(s:)/0q+ f(5:)0G;(s;)/q. If we substitute f(s;) from (3.19), this
can be rewritten as 9¢;(s;,s;)/0q = [(F(s;) + F(si)) /Gi(s:)] [Gi(5:)0G}(s:)/0q —
G'(s;)0G;(s;)/0q|. The sign of this expression is determined by the sign of the term
in the second square bracket, where G;(s;) > 0 and Gi(s;) < 0, for s; € (s, sM),
as mentioned earlier. From (3.4) and (3.5), we have the following: (a) For ¢ = 0,
0G;(s;)/00 = h; + b; > 0 and 0G|(s;)/00 = 0; therefore, 0¢;(s;,s;)/08 > 0. (b)
For ¢ = p;, 0G,(s;)/0p; = 6 > 0 and 0G(s;)/Op; = 0; therefore, 0¢;(s;,s;)/0p; >
0. (c) For ¢ = h;, 0G(s;)/0h; = 0 — s; — E[(w — 8;)7] = —E[(s; —w)*] < 0
and O0G|(s;)/0Oh; = —F(s;) < 0; therefore, 0¢;(s;,s;)/0h; < 0. (d) For ¢ = b;,
0Gi(5;)/0b; = —E[(w — s;)*] < 0 and 9G'(s;)/0b; = F(s;) > 0, so the term in the
second square bracket of the numerator becomes F'(s;)[(hi+p;)0—hisi]—hi E[(w—s;)*].
This expression equals p;# > 0, for s; = 0, goes to zero as s; — 0o, and its derivative
with respect to s; is — f(s;)[(hi +pi)0 — his;] < 0. Hence, it is positive and decreasing,
implying that 0¢;(s;, s;)/0b; > 0. O

Proof of Theorem 3.3. (i) By Theorem 3.2, under (3.18), sf(s;) is increasing in s;
and is the unique solution of (3.14), for i = 1,2. Moreover, from Proposition 3.1,

si(s;) is bounded from above and below by sM and s, respectively, for i = 1,2.

i
Therefore, the two best response functions cross each other at least at one point, as
shown in Figure 3.2. Each point satisfies (3.14) for i = 1, 2.

(ii) By Theorem 3.2, s7(s;) is increasing in 6,p;, and b; and decreasing in h;.
Moreover, it is increasing in s;, where sj(si) is itself increasing in 6, p; and b;, and
decreasing in h;, implying the result.

(iii) By Theorem 4 in Cachon and Zhang (2006), if the best response mapping is
a contraction on the entire strategy space, there is a unique Nash equilibrium. For
a two-player game, this condition reduces to the requirement that the absolute value

of the derivative of the best response function of each player must be less than one.

In our case, this derivative is positive, so the condition further reduces to (3.23). O

Proof of Proposition 3.2. By Theorem 3.3, if condition (3.18) holds, there ex-
ists at least one pure-strategy Nash equilibrium. Consider an arbitrary equilibrium

(sf,55). Both s and s¢ satisfy the first-order condition (3.19), i.e., ¢i(s7,s) = 0 and
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¢j(s5,85) = 0. Because of symmetry, ¢;(z,y) = ¢;(x,y) = ¢(x,y), so the first-order
conditions can be written as ¢(s¢, s) = (F(s) + F(s¢))G'(s¢) + f(s5)G(s¢) = 0 and
Blst,2) = (F(s2) + F(9)G'(s5) + F(s3)G(s5) = 0.

Suppose that (sf,s$) is asymmetric, where without loss of generality s > sf.

If condition (3.18) holds, then ¢(z,y) is decreasing in z, and since s > sf, we

have that ¢(s¢, s¢) < @(s¢, s5), where ¢(s¢,s5) = (F(s5) 4+ F(s5))G'(s5) + f(s5)G(s5).
Moreover, noting that F(s¢) < F(s¢) since s¢ > s¢, and G'(s5) < 0 since from (3.17)
56 € (s, s3"), we have that ¢(s$, s7) < ¢(s5,s7). To summarize, 5§ > s¢ implies that
D(s5, 57) < ¢(s5,55) < ¢(s§,55) which further implies that the first-order conditions,
P(s5,85) = 0 and ¢(s5, sf) = 0, cannot both hold. Therefore, (sf, s%), s§ > s§, cannot
be a pure-strategy equilibrium, so all equilibria are symmetric, proving (i) and (ii).

For any symmetric equilibrium (s¢, s¢), the first-order conditions reduce to the
single condition ¢(s¢,s¢) = ¢(s°) = 2F(s°)G'(s%) + f(s°)G(s¢) = 0, which can be
rewritten as (3.24). If condition (3.26) holds, where

09(s)

95 2F(s)G"(s) + f'(s)G(s) — f(5)G'(s), (B.1)

then ¢(s) is decreasing in s, and since ¢(0) > 0, the first-order condition (3.24) has
a unique solution, implying (iii). Note that, when s{ = s§ = s°, the expected average
demand share of each supplier is 50% of the total demand, so his payoff is given by

(3.25). 0

Proof of Theorem 3.4. Figure B.1 shows a partition of the (s;, s;) space into four
regions: A, B, C, and D, demarcated by s, sM

70 21

m
70
traversing the regions represent contour lines along which the expected average de-

s™, and sé-w . The diagonal curves
mand shares of the suppliers are constant, i.e., they graphically represent function
mi(si, s;) defined in (3.11), for different demand share values 7; € (0, 1) of supplier i.

For any pair (s;,s;) in region B or C, including the Nash equilibrium under
competition (s, sj), which is in region B, there exists a pair on the same contour
line as (s;, s;) that belongs in region A or D (depending on whether the line passes
through A or D) and has a higher payoff than (s;, s;), because it is closer to s* and

s, the maximizers of Gy(s;) and Gj(s;), respectively. This implies that the optimal
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<1/2
Sji A i /ﬂi >1/2
sM
] e .e
(si»s;)
A B
sjm
C/ 4
0 >

Figure B.1: Constant demand-share contour lines m;(s;, s;) for different values of
€ (0,1).

active basestock level pair (sf,s;) belongs in region A or D, given by the following
expression: 0 < s§ < 7" and s7" < 55 < s}/, for (i,7) = (1,2) or (4,5) = (2,1). It
also implies (3.36). To see which of these two regions (s, s) belongs to, consider the
following.

From (3.28) and (3.29), the first-order conditions 0Il(s;, s;)/0s; = 0, i = 1,2,
reduce to ¥;(s;,s;) = 0, i = 1,2, since the term F(s;)/[F(s;) + F(s;)]* in (3.28)
is positive. From (3.14) and (3.29), the conditions v;(s;,s;) = 0, i = 1,2, can be
written as [F(s;) + F(s;)]Gi(si) + f(s:)[Gi(si) — G(s;)] = 0, i - At (s, 8T,
these conditions become v;(si", s7') = f(s{")[Gi(s]") — G;(sT)] , 1= 1,2, since
Gi(s") = Gi(sT) = 0.

(i) If Gi(si") = G;(s]"), then ;(si, s7') = 0, i = 1,2, so (s, s]) is a solution of

Z’]

the first-order conditions. If there exists any other solution, say (s, s), where s} # 57"
and/or s} # s7', then from (3.27), Il(s}, ) = [F(s})Gi(s;) + F(s7)G;(s))]/[F(s}) +

F(s))] < [F()Gilsm)+F(s)G(s0)]/[F(s)+F ()] = G(si") = G (s7) = TI(s", 7).

? J J 4 J t 7y

Therefore, (si*,s7") is a global maximizer of II(s;, s}).

(ii) If Gi(s7") < Gy(s7), then (s, sT') < 0 and t;(si", s7') > 0, so neither first-
order condition is satisfied, i.e., (sj",s}") is not optimal. In fact, any point (s}", s;)
and (s;,s]') does not satisfy the first-order conditions. From our previous analy-
sis, the active basestock level of one supplier must be increased above his myopic
basestock level and the active basestock level of the other supplier must be reduced

below his myopic basestock level. At the optimal active basestock level pair (sf, s5),
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conditions ;(s§,s5) = 0, i = 1,2, become [F(s5) + F(s5)]G(s5) + f(s)[Gi(sS) —
G5 = 0 (F(s5) + F(OIG(5) + F(55)[Gy(55) — Gi(s9)] = 0. Suppose that

J
m<si < sM 0 < 8§ < s Then, Gi(s§) < 0, Gis

7 )

¢) > 0, and the above con-

dltlons imply that Gi(s{) > G;(s%). Then, from (3.27), Gi(s]") < [F(s7")Gi(s)") +

S; J 7

F(s7)Gy(sT)/[F(s7)+F(s7)] = TI(s", s77) < TI(s§, 85) = [F(s5)Gi(s5)+F (s5)G;(s5)]
[F(s5) + F(s5)] < Gi(s7); however, this is impossible, since G;(s7") > Gy(s{). There-
fore, s7" < sY < sf”, 0 < s§ < s7" cannot be true, so it must be the case that
0 < s§ < s, s < 85 < s}'. This implies that Gj(s{) > 0, G’(s5) < 0, and
Gi(s§) < Gj(s5). Moreover, from (3.27), Gy(sf) < Gi(s7") < H(s7", sT') < II(sf,s%) <

Gj(s5) < G;(sT). O

Proof of Theorem 3.5. (i) From Theorem 3.4, the assumption G;(sj*) < G;(s7")
implies that s§ € [0, s*) and s € (57", 5}7).
the first-order conditions 011(s;, s;)/0s; = 0, i = 1,2, reduce to ¢;(s;, s;) =0, i =1, 2,
which can be written as —Gj(s¢)/f(s¢) = [Gi(s5) — G;(s9)]/[F(s§) + F(sf)], i = 1,2,

implying (3.41). If conditions (3.39) hold, then from (3.30), ¥;(s;, s;) is decreasing in

s;, © = 1,2. There are two cases to consider.

As mentioned in the proof of Theorem 3.4,

Case (i-1): If 44(0,55) > 0, equations ¥;(s;,s;) = 0, i = 1,2, have a unique
solution (s, s7), satisfying (3.40), with sf € (0,s7") and s; € (s7*,s}'). Condi-
tions (3.39) also imply that at (s, s5), 0°I1(s{,s5)/ds7 < 0, ¢ = 1,2. From (3.28),
(3.29), (331): PPIs5 )/ 0508, = {[=5(s5)ls, 5+ P00, 5) /05 (5 +
P2+ 20P(55) + PS5 F(5) PS5 5 5907 (55) + F(S5)]1 = 0, simee (s, 5),
Vi(sg, 85) = 0, from (3.29) and (3.40), and 0v;(sf, s§)/0s; = 0, from (3.31) and (3.41).
Therefore, the determinant of the Hessian at (s§

s¢, s§) satisfies:

[0°11(s, 55) /057 1[0°IL(s5, 55) /0s5] — [0°I1(sf, 55)/Os:0s;]* >

So, (sf,s§) is a local maximum of II(s;, s;); however, since equations (s, s) =
0, 7 = 1,2, have a unique solution, (sf, s%) is a global maximum.

Case (i-2): If 4;(0,55) < 0, then II(s;, s;) is decreasing in s;, for s; > 0, implying
that s¢ = 0 and s$ uniquely satisfies the first-order condition 9TI(0, s;)/ds; = 0, which

reduces to (3.42).
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(ii) We have that 0 = 9;(sf, s7) < ¢;(sf,55) < ¢;(s7,s5), where the first equality
holds from (3.40) and (3.41), the first inequality holds from (3.29), and the last
inequality holds from (3.16) and the fact that s§ > s¢ from Theorem 3.4 (ii). From
(3.18), ¢;j(si, s5) is decreasing in s;, and since ¢;(s7, s7) > 0, in order for ¢;(sf, s5) =0

to hold, it must be that s§ > s7. O

Proof of Proposition 3.3. (i) The proof follows from Theorem 3.2. First, note that
if f(w) is given by (3.46), f'(w) < 0; therefore, condition (3.18) immediately holds.
To solve equation (3.19), it is sufficient to set the numerator of the right-hand-side of
(B.8) at zero, i.e., solve (p; — As;)e*i — (e*¥ — 3;) = 0. For convenience, we define
2 = B; + p;e™ and m = e and rewrite the above equation as e** + m\s; = z,
or equivalently m (z/m — A\s;) e = 1. If, in addition, we set u = z/m — \s;
or 5; = —(mu — 2z)/(Am), the above equation can be rewritten as ue* = e*/™/m.
Finally, by setting ue* = e*™/m = k, this equation further reduces to ue* = k.
From property (ii) of the Lambert W function, the latter equation has a unique
solution given by W (k) = u. Back substituting k, v, m, and z yields (3.49). (ii) The
bounds in (3.50) follow directly from (3.7), (3.8), (3.46), and (3.49). O

Proof of Proposition 3.4. The proof follows from Theorem 3.3. Firstly, recall from
the proof of Proposition (3.3) that if f(w) is given by (3.46), condition (3.18) immedi-
ately holds, and the solution of equation (3.19) is obtained by solving (p; — As;)e** —
(e** — B;) = 0, which can be rewritten as (3.51). To verify condition (3.23), we use
property (iii) of the Lambert W function to compute the first derivative of s}(s;) as
follows:

i—Asj+Bie ) _ a —As;
osi(ss) _ W () < e
ds; W <eﬁi—)‘5j+5ieiksj) +1 .

Clearly, 0s}(s;)/0s; < 1, since —f;e7*% < 1, hence the best response is a contraction

mapping on the entire strategy space. [

Proof of Proposition 3.5. The proof follows from Theorem 3.4 and Theorem 3.5.
First, note that if f(w) is given by (3.46), s/* = In(5;)/A, from (3.7), and G;(s") =
hi(p; —In(B;))/A, from (B.4). Using the last equality, assumption (3.54) implies that
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Gi(sm

7

) < Gy(s}"), which, from Theorem 3.4 (ii), further implies that 0 < sf < s7"
and s7" < 57 < sj-w. Therefore, s§ > s7" > 0 and s7 > 0.
Also note that v;(s;, 5;) in (B.9) is the product of functions e *i*%) and L;(s;, s;),

where:
Li(si,s5) = € [hi(ps — Asi) = hj(p; — Xsj)] — [ha(e™ = Bi) + hy(e™ — B;)] .

The first function is positive and decreasing in s;. L;(s;, s;) is also decreasing in s;,
since OL;(si, 87)/0s; = —[Ahi(e* + )] < 0. Therefore, for values of s; for which
Li(si,s5) > 0, 1;(s;, sj) is decreasing in s;, because it is the product of two positive,
decreasing functions. For values of s; for which L;(s;,s;) < 0, ¢;(s;,s;) < 0. This
implies that the condition ;(s;, 35) = 0 has at most one positive solution. There are
two cases to consider.

Case (i): Li(0,s5) > 0. In this case, the condition (s, s§) = 0 has one positive
solution s > 0, and therefore Oll(s§, s5)/0s; = 0. To show this, assume that the
equations v;(s;,s;) = 0, i = 1,2, have a unique solution (s, s%), where s{ > 0 (recall
that s > 0 by assumption (3.54)). Setting v;(s;,s;) = ¥;(s4,5;) = 0 in (B.9) yields:
i Thi(pi — As§) — h(pj — AsS)] = e [hj(p; — As§) — hi(p; — As{)]. This equality holds
only if the expressions in both square brackets of (B.9) are zero, yielding (3.55) and
(3.56). Substituting s¢ from (3.55) into (3.56) yields:

hifBi + hjBj — (hie™i + hjelAPThirsd/ihy — g,

Note that the left-hand side of the above equation is L;(sf, s§) which, seen as a function
of s{, is decreasing in s, as also mentioned earlier. For this equation to have a positive
solution, it must be positive at s{ = 0, which implies that Ap < h;In(K). Reversing
the arguments and assuming that Ap < h;In(K), leads to the conclusion that the
equations v;(s;, s;) = 0, i = 1,2, have a unique solution (s, s%), where s7, s; > 0.
Case (ii): L;(0,s5) < 0. In this case, the condition v;(s;,s§) = 0 has a zero
solution or no solution, and therefore s{ = 0 and 9II(sf, s)/ds; < 0. To see this, note

that if Ap > h;In(K), then L;(0,s) < 0 and therefore the equation 9;(s;, s§) = 0

either has a zero solution or no solution, as mentioned earlier. In this case, s{ = 0 and
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s¢ uniquely satisfies L;(0,55) = 0. The solution of this equation is given by (3.57).
Again, if we reverse the arguments and substitute s¢ into the inequality L;(0, sf) <0,

leads to the condition Ap > h; In(K). O

Proof of Theorem 3.6. The bounds in (3.66) can be derived as in the proof of
Proposition 3.1.

The proof of (i) and (iii) are similar to the corresponding assertions in Theorem
3.2.

To prove (ii), consider the first derivatives of ¢;(s) given by:

0048) T Fse)Glis) + 30 TT Flse)(F(s)CL(s) + F(s)Gils)), (B2)

Osi ki 1#i kAL

22— ) T A6 + 32 TT P (Fls)Gis) + S(5)Gis))

0s; kAj i 14, k#l,j,i
(B.3)

for j # i. The derivative of s}(s_;) with respect to s; is given by the fraction in
(3.68) by using implicit differentiation. The denominator of that fraction is negative
by condition (3.66) and the numerator is positive. To see this, set ¢;(s) = 0 and
substitute [F(s;)G’(s;) + f(s:)Gy(s;)] from (3.64) into (B.3). The result is:

0¢i(si(s—;) Flse)f(s)C! 1_21¢J1Hk¢13z_(_ k) F(s5)
88] k];;[l k ] ( ( ))[ zl;ﬁll—[k;é“F( ) ]7

for j # i. The above expression is positive, because G}(si(s_;)) < 0 and the term

inside the square brackets is positive. O

Expressions for exponentially distributed demand

If f(w) is given by (3.46), expressions (3.4), (3.5), (3.7), (3.10), (3.14), and (3.29)

become: ) \ \
i\pi — Asi+1—Fie™™™
Gi(sy) = Loz - fre?) (B.A)

Gi(si) = —hi (1= Bie™), (B.5)
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= =, (B.6)

hi (pi — Asi + 1 — Bies) e

II;(si,85) = N+ o) ; (B.7)
hi [(Pz — As;)eMi — (M — ﬁz)}
bi((si, 85) = peewrn . (B.8)
e [hi(pi — Asi) — hi(p; — Asj)] — [hi(e™ — By) + hy(e* — B;)
vilon o) = — ei@-ﬂjg ’ ) (B.9)
Moreover, from (3.8), (B.4), and (B.6), we have:
i 1 W —0; _(Pi+1)
= (Zhie ), (B.10)
A
Gi(syr) = Helen 1) (B.11)

A



Appendix C

Chapter 4 Supplemental Material

Proof of Theorem 4.1. In the single-period problem, clearly, the optimal selection
policy is the revenue-greedy policy, according to which active buyers are served in
descending order of their revenue rate. Under this policy, the expected profit function
G(y) = E[g(y)] for any order quantity y € By is given by (4.13). The first-order
difference of G(y), denoted by G4 (y), is:

Gi(y) =Gy) -Gy —1) = Z fi-v(y — Dawre —c¢, y € B, (C.1)

The second-order difference of G(y), denoted by Gy(y), is:

n

Ga(y) = Gi(y +1) — Gi(y) = Z (fi—n(W) = fa—n(y — 1)) a@yr ), (C.2)

1=y

for y € {1,...,n — 1}. Using conditioning, f(;(y) can be written as follows:

7 n—1
fow)=>_fo-nw—Day [[ aw. i=veB.
=y k=j+1
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Substituting f(;—1)(y — 1) from the above expression into (C.2) yields:

Ga( Z [(ng n(y—1)q H q(k )— (i— 1)(y—1)] OUOr

=y k]+1

where y € {1,...,n — 1}. Collecting terms and rearranging yields:

= Z fa—n( — Dawy (ne) — 7)) (C.3)
i=y
for y € {1,...,n — 1}, where 7, is given by following recursion:
NGy = 4G+0)7(i+1) T Qi+, 1= 1,...,n—1, and Nny = 0. (C4)

Next, we show by induction that r;) > 1@, @ =1,...,n. Clearly, rq) > 1) = 0.
For ¢ =1,...,n — 1, assume that rgy1) > nu1). Then, rg)y > 741 = qurn)T+1) +
Qi+1)T(i+1) > Qi+D)T(i+1) T Qi+1)NG+1) = M), Where the first inequality follows from
(4.14) and the second follows from the induction hypothesis. Because r@,) > 14, © =
Y,...,n, all the terms in (C 3) are negative and hence GQ( ) < 0. Therefore, G(y) is

77777

given by (4.15). O

Proof of Proposition 4.1. To show that y™(a’) > y™(a) for any two satisfaction
state vectors @’ and a such that &’ > a, it suffices to show that y™(a’) > y™(a) for
o’ and a such that o, = 1 and a; = 0, for some j € B, and o} = «, @ # j. To simplify
notation, let f{;,(-) and f()(-) denote the p.m.f. of D) (') and Dy (ev), respectively.
To show that y™(a’) > y™(«v), it suffices to show that G’ (y) > Gi(y), where G (y)
and G (y) denote the first-order differences G (e, y) and Gy (e, y), respectively. From
(C.1), and assuming that o = 1 and a; = 0, for some j € B, and o] = a;, i # j, we
define the differce AG; = G’ (y) — G1(y) and we have:

AG, — { Agi) -0 = Vrgy + 2 Finy v = 1) = fon (v = Dawra, 72,
0, 7 <Y,
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AGL= Lz | Ao fg-n(y = Drg) + Z foy = 1) = fa-n(y = D)aoyra,
i=7+1
We will only consider the case j > y because, for j <y, AG; = 0. Let D)y =
Z;c:l,k;éj d(k) and let f(i)\{j}(k) denote the p.m.f. of D(i)\{j}. Clearly, f(i)\{j}(k) =
f(i)(/f), 1< j, and
foniy (k) = f-n(k), (C.6)

Jongy (k) = fa—ongy (k= Day + fa—ongy (F) G, @ > J. (C.7)

We can express the pm.f.’s in (C.5) as follows: f(,(y — 1) = fung(y — 2)g(; +

fingy(y = 1)q) and fiy(y = 1) = fangy (¥ — 2)a6) + foniy (v — D), @ = j. Substi-
tuting the difference of the above expressions into (C.5), also substituting f(;_1)(k)
from (C.6), yields:

AGT = Aqi) (fong (y )+ Z G-\ Y — 2) = fa-onr (v — 1)aera)-
1=j+1

Substituting fi-1)\(3(y — 1) from (C.7) into the above expression, unfolding the

recursion, and collecting terms yields:

AGt = Aqi) (fongry — D(rgy — ngy) + Zfz WY = 2)a6) (7o) — 16),

1=7+1

where 7;) is given by (C.4). As was shown in the proof of Proposition 1, r¢ >

Ny, ¢ € B; therefore, all the terms in the above equation are positive, and hence

AGl > 0. ]
Proof of Proposition 4.2. Consider the states o' = (af,a5,...,a!) and o =
(a1, a9, ..., ay), such that o = «a;, Vj # i, and, a; = 0,; = 1, for some i € B,

then o’ > «. Consider two sample paths, a nominal path starting from « and
following the optimal ordering policy and buyer selection policy, and an alternative

path starting from o and following the actions of the nominal path. If buyer i is
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active in the nominal path, she is also active in the alternative path. If the firm
serves (does not serve) this buyer in the nominal path, it also serves (does not serve)
her in the alternative path. Therefore, her satisfaction state becomes 1 (0) in both
sample paths, and the two paths become identical thereafter. If buyer ¢ is inactive
in the nominal path, she is either also inactive or active in the alternative path. In
the first case, her satisfaction state in both sample paths remains unchanged and the
argument is repeated in the next period. In the second case, her satisfaction state in
the nominal path remains unchanged, i.e., 0. In the alternative path, if there is no
excess capacity, the firm does not serve the buyer. In this case, her satisfaction state
becomes 0, and the total satisfaction states in the two sample paths become identical.
If there is excess capacity, the firm serves the buyer, receiving a reward r;, and the
satisfaction state of the buyer remains unchanged. In this case, the satisfaction state
of the buyer in both sample paths remains unchanged and the argument is repeated.
To summarize, the satisfaction state of buyer 7 in the alternative path either becomes

the same as that in the nominal path or is greater than that in the nominal path. [J

Proof of Proposition 4.3. From (4.1), 7, > ~; implies ¢;(1)g;(0) > ¢;(0)g;(1),
which implies P(d;(1) + d;(0) = 2) > P(d;(0) + d;(1) = 2), which implies P(d;(1) +
d;j(0) > 2) > P(d;(0) + d;(1) > 2). From (4.2), % > #; implies ¢;(1)g;(0) <
3:(0)g;(1), which implies P(d;(1) + d;(0) = 0) < P(d;(0) + d;(1) = 0), which im-
plies P(d;(1) + d;(0) > 1) > P(d;(0) + d;(1) > 1). Therefore, 7; > v; and 7; > 7,
imply d,(1) + d; (0),di(0) + d (1)

O

Proof of Proposition 4.4. If y(a) = n—1, Ve, the buyer selection policy matters
only when all buyers are active. In this case, the question is not who to select but
who to leave out. Suppose that when all buyers are active, buyer j has the lowest
priority and is left out. In this case, she becomes dissatisfied, and all other buyers
become satisfied, i.e., the satisfaction state vector becomes a; = (av1,..., 05 @ a; =
0, ap =1, k€ B\ {j}). Once in state o, the satisfaction state vector will remain
in a; until buyer j is served. Given that she has the lowest priority, this will happen
only if she is active and at least one of the other buyers is inactive. The probability
of this event is ¢;(0)F;(n —2) = ¢;(0)[1 — [Ticm iy @6(1)]. When this event happens,
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buyer j becomes satisfied and all other buyers remain satisfied, i.e., the satisfaction
state vector becomes a; = (aq,...,a, : o = 1, k € B). Once in state ay, the
satisfaction state will remain in a4 until all buyers are active again and, as before,
buyer j is not selected. The probability of this event is [, ;5 qr(1). When this event
happens, buyer j becomes dissatisfied, all other buyers remain satisfied, and the
cycle repeats. Therefore, when buyer 7 has the lowest priority, the buyer satisfaction
state vector is a Markov chain with two states, a; and a1, and transition probabilities
Para; = [lres @(1) and pajay = ¢;(0)[1—]T;ep 1y @:(1)]. The stationary probabilities
of these two states are Ta; = [[1c5 @(1)/(IT1es @ (1) + @ (0)[1 — [T 4y ax(1)]) and
Tay = 1 — Ta,. Every time the Markov chain makes a transition to state o, buyer
7 is not served, and every time it makes a transition to state ay, buyer j is served.
Therefore, the expected contribution of buyer j to the firm’s revenue is 74, ¢;(1)r; =
(1 = 7mq,)q;(1)r;. The expected contribution of the other buyers, who always remain
satisfied, is ), B\{i} qr(1)7. Thus, the total average expected profit of the firm when
buyer j has the lowest priority is ZkeB\{i} (1)1 + (1 —7q,)q;(1)r;—(n — 1) ¢, which,
after some algebraic manipulations, can be rewritten as (4.18), where z; is given by
(4.17) for i = j. So, if the firm wants to maximize its average expected profit, it must
assign the lowest priority to the buyer with the smallest value of z;. Thus, z; is the

index, and the optimal average expected profit is given by (4.18). O

Proof of Theorem 4.2. When n = 2, buyer selection matters only when y = 1 and
both buyers are active. In this case, if the firm selects buyer ¢ over j, the satisfaction
state vector becomes (a; = 1, o; = 0), regardless of its initial value, implying that the
optimal selection policy is an index policy. Assume for the moment that the optimal
ordering policy is an FOQ policy, i.e., y*(a) = y*, where y* =0, 1, or 2. If y* = 1,
then from Proposition 4.4, the optimal selection policy is an index policy w* with
index for buyer ¢ given by (4.17), which for n = 2 reduces to (4.22). If y* = 0 or 2,
buyer selection is irrelevant as was mentioned earlier and any policy including w? is
optimal.

Next, we will show that the optimal ordering policy satisfies the monotonicity
property in Conjecture 1, namely, y*(a’) > y*(a),@’ > a, and then, we will show

that in fact y*(a) = y#, where y* = 0, 1, or 2. To this end, suppose that the firm uses
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index policy w* and without loss of generality assume that z; > z;, i # j € B = {1, 2},
i.e., buyer ¢ has priority over j. Then, the optimality equation (4.10) can be written
as II = maxyep,{Ealg(y, u")] + G(a,y,u*)}, where:

Ealg(y, u")] = Lyyz0y (rigi(i) —c) + 1{y=2}(erj(aj) —c)+ 1{y:1}7"j(ji(ai)%(aj)v (C.8)
Gla,y,u”) =E4[V(P(a,u"d))] — V(). (C.9)

Consider the optimal order quantity when both buyers are dissatisfied, y*(0,0).
There are two cases.

Case 1: y*(0,0) = 0. In this case, state a = (0, 0) is absorbing. This case arises
if the firm cannot be profitable in any state, so it is better off setting y*(a) = 0, Ve,
and hence II = 0. Clearly, the monotonicity property holds, and in fact, the optimal
ordering policy is an FOQ policy with FOQ y* = 0.

Case 2:  y*(0,0) > 0. In this case, the firm can be profitable is some states,
so IT > 0. We will show that y*(a) > 0,a # (0,0). To this end, assume that
the reverse is true, ie., y*(a) = 0, for some a # (0,0). There are three sub-

cases to consider. Subcase 2-i: a = (1,1), so G(e,0,u*) = ¢1(1)g(1)(V(0,1) —

V(l 1)+ q(1)g(1 )( (1,0) =V (1,1)) 4+ q1(1)g2(1)(V(0,0) = V(1,1)). Subcase 2-ii:
= (0, ), so G(a, 0,u*) = ¢2(1)(V(0,0) — V(0,1)). Subcase 2-iii: a = (1,0),
so G(a,0,u*) = ql(l)(V(0,0) — V(1,0)). In all subcases, E4[g(0,u*)] = 0 by

(C.8) and G(a,0,u*) < 0 by Proposition 4.2, which means that the firm makes
no profit or even incurs losses. However, this is impossible, given that the as-
sumption y*(0,0) > 0 implies IT > 0; therefore, y*(a) > 0, # (0,0). To show
that y*(a’) > y*(a), @’ > a, it suffices to show that argmax,c(i 23 {Ealg(y, w) +
G(a/,y,u")]} > argmaxycp o {Ealg(y, u) + G(o,y,u*)]}, o > a. To this end, we
must show that Ay g(u) > Agg(u) and AG(e/,u*) > AG(a,u*), ' > a, where
Apg(u) =Eq[9(2,u) — g(1,u)] and AG(a, u*) = G, 2, u*) — G(ax, 1, u*). Clearly,
Aag(u) = rjqi(ai)g;(a;) — ¢ from (C.8) and AG(a,u*) = gi(ai)g;(a;)(V(L,1) —
V(1,0)) from (C.9), which implies the result.

To complete the proof, note that any ordering policy satisfying y(a’) > y(a), o’ >

a, drives a; to an absorbing state (or set of two states) that can also be reached under
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an FOQ policy. Specifically, if y(a) = 0, 1 or 2, Ve, then o is absorbed in state
a = (0,0), the set of states a = (1,0) or state a = (1, 1), respectively. Therefore,
the initial assumption that y*(a) = y*, where y* = 0, 1, or 2 is verified.

To find the exact value of y?, it suffices to compare the average expected profit
[1¥*" under index policy w* and FOQ policy y(a) =y, Va, for y = 0,1,2. Clearly,
if y = 0, both buyers are always dissatisfied and II1%%" = (. Similarly, if y = 2, both
buyers are always satisfied and [1*%" = R — 2¢, where R is given by (4.19). Finally, if
y=1,1I"" = R— R; — c from (4.18), where R; is given by (4.20). Moreover, it can
be shown that if I[I'%*" < I1%% = 0, then II>%*" < IIY%" < I[1%%". Therefore, y* = 0
if T19% > I15%7) % = 2 if [12%° > I8 and ¢* = 1 if IV > max(119%, [12%7),
leading to the conditions in Table 4.1. O

Proof of Proposition 4.5. Substituting ¢(a;, d;, u;) and ®(e, d, w) from (4.7)—(4.8)
and ‘A/’\(a) and II* from (4.27)—(4.28) into (4.26), and simplifying terms, yields:

I+ V) =E
i€B d

JQ%) {Z (rs — Ny + V2w + (1 — di)ai)}] .

1€B

Interchanging summation with maximization and expectation in the r.h.s. yields
(4.29). O

Proof of Proposition 4.6. Carrying out the expectation in (4.29) yields:

I} + VNa;) = max {QZ’(%)[(H — Mu; + Vf(“i)]} + Gi(on) VM (). (C.10)

u;€{0,1}

Let h;(u;) denote the term inside the maximization as a function u;. Then h;(1) —
hi(0) = gi(ay) (r; — N+ VA1) — ‘A/[\(O)) Substituting VA (1) and VA(0) from (4.31)
yields the difference: hi(1) — h;i(0) = g;(as)[ri — A) + (rs = \) /(1 — )] I ry > A,
this difference is positive which implies that u; = 1 is optimal. If r; < A, the difference
is negative which implies that u; = 0 is optimal. In both cases, II} given by (4.32)
and V(1) and V2(0) given by (4.31) verify (C.10) and therefore (4.29). O

Proof of Proposition 4.7. From (4.24), (4.28) and (4.32) we have: II¥* = (\ —

Ay(a)+>cp (ri — A) Tqi(1). Clearly, I is continuous, piecewise linear, and convex
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in A, with (91154 /0X)" = y(a) — Y47 quo (1) for riy <A< vy, i=1,...,m+ 1,
where 7y — 0o, by convention. The value of A that minimizes (4.33), denoted by A\*,
is the smallest \ for which (9IT¢*/ 8)\)+ > 0, which can be expressed as (4.34). [

Proof of Corollary 4.3. If y(a) = n—1, Va, then there are two cases to consider.
Case 1: >, qu(l) > n—1. From (4.34) and (4.38), i* = n, A" = 1), lj; =
T(4) + (T(Z‘) — T’(n)) '7(1’)/ (1 _'Y(i)) > T(i), 1=1,...,n—1, and lzkn) = T(n)- Case 2:
Y ore1dw(1) < n—1. From (4.34) and (4.38), ©* = n+ 1,X\* = r@,41) = 0, and
Gy =re + T V), (1 —’y(i)) = r3)/ (1 —fy(i)) = 53, ¢ € B. For B = {1,2}, case 1
yields: lZ‘l) >y > T = la); therefore, the buyer selection policy is revenue-greedy,

which is what we would get if we set lz‘l) =) O]

Proof of Proposition 4.8. If d; = 0, the solution of DP (4.42) is w; = 0, since
u; < d;. If d; = 1, there are two cases to consider. Case 1: D_; < y(a). In this
case, the term inside the maximization in (4.42) is V,”(0), for u; = 0, and r; + V% (1),
for u; = 1. Clearly, u; = 1 is optimal, because r; + V(1) — V!(0) = 6, from (4.41)
and 6; > 0, since 6; is defined as the subsidy that must be given to the firm to make
it indifferent between selecting vs. not selecting buyer i. Case 2: D_; > y(a).
In this case, the term inside the maximization of (4.42) is V,%(0) for, u; = 0, and
ri—0;4+ V% (1), for u; = 1, which equals V;%(0) from (4.41); therefore, both u; = 0 and
u; = 1 are optimal. This is expected because 6; is defined as the subsidy that must
be given to the firm to make it indifferent between selecting vs. not selecting buyer <.
Therefore, in both cases, u; = 1 is optimal. From the above analysis, DP (4.42) for
u; = 1 can be written as follows, after carrying out the expectation and rearranging
terms: T1" +q; () V" () = gias) [rit V(D] F-s(y (@) = 1)+ V" (0) Fi(y (@) 1), o =
0,1, ¢« € B. This set of equations has multiple solutions. For this reason, we set
V%(0) = 0 and we write the above expression as follows: 1% + ¢;(c;)V% () =
gi(a)F_i(y(a) — D)[r; + V%(1)]. For oy = 0,1, this expression can be written as
1% = (0) Fs(y(e) — Vlri+ T (1] and [ = (1) Fi(y(e) — Dy — ()T (1)1 -
F_;(y(a) — 1)], respectively. The solution of these equations is given by (4.43) and
(4.44). Substituting the solution into (4.41) yields (4.45). O

Proof of Corollary 4.4. If y(a) = n—1, Ve, state @y = (aq,...,a, :ax =1, k € B)



164 APPENDIX C. CHAPTER 4 SUPPLEMENTAL MATERIAL

can be reached under any buyer selection policy. When a is reached, F*!,(n—2) = 1—
[Ties iy 90 (1). From (4.17) and (4.45), this implies that 0;(a1) = z;, ¢ € B. Under
the active-constraint index policy, if all buyers are active in state a1, the buyer with
the smallest index, say 7, is left out and becomes dissatisfied, and all other buyers re-
main satisfied, i.e., the state becomes a; = (a,...,a, 1 ; =0, o, =1, k € B\ {j}).
In state o, F';(n — 2) remains unchanged. From (4.45), this implies that the index
of buyer j remains unchanged, i.e., §;(a;) = 0;(c1) = z;. Fori # j, F_;(n —2) =
P(d;(0)+> pep gijy dr(1) < n—2) which, from (4.45) and the fact that d;(1) > d;(0),
implies that the index of buyer i becomes larger, i.e., 6;(a;) > 0;(a1) = z;. There-
fore, in state o;, the buyer with the smallest index is still j. This means that if all
buyers are active in state o, buyer j is left out and remains dissatisfied, while all
other buyers remain satisfied, i.e., the satisfaction state vector remains a;. On the
other hand, if buyer j is active and at least one of the other buyers is inactive, then
all active buyers, including j, are satisfied, and the satisfaction state vector becomes
a1. This behavior is identical to that under the optimal buyer selection policy given

by Proposition 4.4. O
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