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Περίληψη 

 

Η παρούσα διατριβή  πραγματεύεται δυναμικές πολιτικές προμηθευτών των οποίων η 

ζήτηση εξαρτάται από την ποιότητα εξυπηρέτησης που παρέχουν. Η διατριβή διαρθρώνεται σε 

τρείς ενότητες. Η Ενότητα 1 διερευνά βέλτιστες δυναμικές πολιτικές αποθέματος όταν η 

συχνότητα επισκέψεων των αγοραστών καθορίζεται από προηγούμενες εξυπηρετήσεις. Η 

Ενότητα 2 εξετάζει τον ανταγωνισμό και τη συνεργασία προμηθευτών για την αφοσίωση των 

αγοραστών βάσει της εξυπηρέτησης που τους παρέχουν. Η Ενότητα 3 εξετάζει τη δυναμική 

παραγγελιοδοσία και επιλογή αγοραστών όταν η εξυπηρέτηση επηρεάζει τη μελλοντική 

ζήτηση. Ακολουθούν οι περιλήψεις των τριών ενοτήτων. 

Ενότητα 1. Ένας αγοραστής που εκτίθεται σε έλλειψη αποθέματος μπορεί να χάσει την 

εμπιστοσύνη του και να είναι λιγότερο διατεθειμένος να επιλέξει τον ίδιο προμηθευτή στην 

επόμενη προμήθειά του. Αντίστροφα, μια θετική αγοραστική εμπειρία με διαθέσιμο απόθεμα 

μπορεί να αποκαταστήσει την προοπτική του προμηθευτή να επιλεγεί στο μέλλον. Ποια πρέπει 

να είναι η πολιτική ελέγχου αποθεμάτων του προμηθευτή σε αυτήν την περίπτωση; Για να 

αντιμετωπίσουμε αυτό το ερώτημα, αναπτύσσουμε ένα μοντέλο πολλαπλών περιόδων ενός 

αγοραστή που επιλέγει έναν προμηθευτή με πιθανότητα που εξαρτάται από την αξιολόγηση 

του προμηθευτή. Η αξιολόγηση αυτή αντικατοπτρίζει την εμπιστοσύνη του αγοραστή προς τον 

προμηθευτή βάσει της προηγούμενης εξυπηρέτησης που μετριέται με όρους περιστατικών 

διαθεσιμότητας/έλλειψης αποθέματος και ενημερώνεται από τον αγοραστή μετά από κάθε 

εξυπηρέτηση. Η βέλτιστη πολιτική αποθέματος του προμηθευτή διαχωρίζει τον χώρο 

αποθέματος σε διαστήματα παραγγελίας και μη παραγγελίας για κάθε επίπεδο αξιολόγησης. Η 
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βέλτιστη απόφαση εξαρτάται από το εάν η παραγγελία μειώνει τον κίνδυνο υποβάθμισης του 

προμηθευτή αρκετά ώστε να αντισταθμίσει την αύξηση του κόστους παραγγελίας και 

αποθέματος. Βρίσκουμε και αξιολογούμε τα όρια της βέλτιστης πολιτικής και παρουσιάζουμε 

ορισμένες από τις ιδιότητές της. Δίνουμε προϋποθέσεις για τη βελτιστότητα πολιτικών 

αποθέματος βάσης (basestock) και δείχνουμε ότι τέτοιες πολιτικές είναι βέλτιστες εάν 

υπάρχουν μόνο δύο αξιολογήσεις (καλή και κακή) ή εάν η ζήτηση του αγοραστή είναι σταθερή. 

Χρησιμοποιώντας το μοντέλο μας, υπολογίζουμε το κόστος αποθεμάτων στο πλαίσιο ενός 

προτύπου εφημεριδοπώλη (newsvendor). Τα αριθμητικά πειράματα υποδεικνύουν ότι (i) ο 

προμηθευτής μπορεί να επωφεληθεί από τη διατήρηση υψηλότερων αποθεμάτων όταν έχει 

μέτριες αξιολογήσεις παρά ακραίες αξιολογήσεις και από τη συναλλαγή με έναν αγοραστή που 

ανταποκρίνεται λιγότερο ακανόνιστα στην εξυπηρέτηση, (ii) οι πολιτικές basestock είναι 

αποτελεσματικές και (iii) χρησιμοποιώντας ένα αυθαίρετο κόστος έλλειψης αποθέματος στο 

πλαίσιο του προτύπου του εφημεριδοπώλη μπορεί να βλάψει σημαντικά τα κέρδη. 

Ενότητα 2. Η συμπεριφορά μιας εταιρείας πού αλλάζει εύκολα προμηθευτές (always-

a-share) με γνώμονα την εξυπηρέτηση μπορεί να έχει σημαντική επίδραση στις ανταγωνιστικές 

και συνεργατικές πολιτικές αποθεμάτων των προμηθευτών της. Για να διερευνήσουμε αυτή 

την επίδραση, εξετάζουμε ένα μοντέλο ενός επαναλαμβανόμενου αγοραστή που μοιράζει την 

προτίμησή του μεταξύ δύο ετερογενών προμηθευτών τύπου εφημεριδοπώλη σε έναν άπειρο 

ορίζοντα. Για να πετύχει το μέγιστο πλεονέκτημα εξυπηρέτησης, ο αγοραστής επιβραβεύει τη 

διαθεσιμότητα του προϊόντος με επαναγορά (εμπιστοσύνη) και τιμωρεί την έλλειψη 

αποθέματος με αλλαγή (δυσπιστία) την επόμενη περίοδο. Για την αντιμετώπιση αυτής της 

συμπεριφοράς, η βέλτιστη πολιτική παραγγελιών κάθε προμηθευτή είναι μια πολιτική 

basestock με μη αρνητικό «ενεργό» επίπεδο basestock όταν ο προμηθευτής έχει την 

εμπιστοσύνη του αγοραστή και μηδενικό όταν δεν την έχει. Κάτω από ανταγωνισμό, το 

βέλτιστο ενεργό επίπεδο basestock κάθε προμηθευτή είναι μεγαλύτερο από το μυωπικό του 

επίπεδο basestock και είναι αύξον ως προς το ενεργό επίπεδο basestock του άλλου προμηθευτή. 

Κάτω από μια ελάχιστα περιοριστική συνθήκη, τα ενεργά επίπεδα basestock και των δύο 

προμηθευτών έχουν τουλάχιστον μία λύση ισορροπίας Nash καθαρής στρατηγικής (pure 

strategy). Εάν οι προμηθευτές συνεργάζονται, το βέλτιστο ενεργό επίπεδο basestock του 

προμηθευτή με το υψηλότερο/χαμηλότερο μυωπικό κέρδος είναι μεγαλύτερο/μικρότερο από 

το αντίστοιχο επίπεδο του μυωπικού επιπέδου basestock. Για να κατανοήσουμε καλύτερα αυτά 

τα αποτελέσματα, τα εφαρμόζουμε στην περίπτωση που η ζήτηση του αγοραστή έχει εκθετική 
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κατανομή. Αυτό μας επιτρέπει να λάβουμε ακριβείς εκφράσεις για τα βέλτιστα ενεργά επίπεδα 

basestock και τις συναρτήσεις κερδοφορίας, τις οποίες στη συνέχεια χρησιμοποιούμε σε μια 

αριθμητική ανάλυση ευαισθησίας. Ολοκληρώνουμε την ενότητα αυτή με μια συζήτηση για την 

επέκταση των αποτελεσμάτων σε περισσότερους από δύο προμηθευτές. 

Ενότητα 3. Οι προμηθευτές που κατασκευάζουν προϊόντα για αποθήκευση (make-to-

stock) και έχουν τακτικούς αγοραστές πρέπει να εξισορροπήσουν το κόστος των 

υπεραποθεμάτων έναντι του κόστους που προκύπτει από τις αντιδράσεις των αγοραστών όταν 

τα προϊόντα δεν είναι διαθέσιμα. Σε περίπτωση ελλείψεων, η επιλογή των αγοραστών που θα 

εξυπηρετηθούν και συνεπώς θα ικανοποιηθούν πρέπει να αντισταθμίζει τα τρέχοντα έσοδα από 

τους ικανοποιημένους αγοραστές έναντι των απωλειών της μελλοντικής ζήτησης από τους 

δυσαρεστημένους αγοραστές. Για να παράσχουμε κατανόηση και υποστήριξη αποφάσεων 

σχετικά για το παραπάνω πρόβλημα, (i) αναπτύσσουμε ένα καινοτόμο μοντέλο τύπου 

εφημεριδοπώλη μιας εταιρείας με ετερογενείς αγοραστές με ζήτηση που εξαρτάται από την 

εξυπηρέτηση, (ii) παρέχουμε ιδιότητες των βέλτιστων αποφάσεων παραγγελίας και επιλογής 

αγοραστών και (iii) αναπτύσσουμε μια καινοτόμα πολιτική τύπου δείκτη (index policy) για την 

επιλογή αγοραστών που βασίζεται στη Λαγκρανζιανή Χαλάρωση (Lagrangian Relaxation 

(LR)) και τη συγκρίνουμε με δύο άλλες πολιτικές δεικτών LR. Το μοντέλο αφορά μια εταιρεία 

που παραγγέλνει προϊόντα για μια ομάδα επανερχόμενων αγοραστών που αφήνουν 

διαφορετικά έσοδα και επισκέπτονται την εταιρεία με διαφορετικούς μέσους ρυθμούς που 

εξαρτώνται από το αν είναι ικανοποιημένοι ή δυσαρεστημένοι με την τελευταία τους 

εξυπηρέτηση. Η επιχείρηση επιλέγει ποιους αγοραστές θα εξυπηρετήσει εάν η ζήτηση 

υπερβαίνει την ποσότητα παραγγελίας (τρέχουσα δυναμικότητα). Για δύο αγοραστές, 

δείχνουμε ότι μια πολιτική Σταθερής Ποσότητας Παραγγελίας (Fixed Order Quantity (FOQ)) 

και μια πολιτική επιλογής αγοραστών τύπου δείκτη είναι βέλτιστες. Για περισσότερους 

αγοραστές, η βέλτιστη πολιτική περιλαμβάνει υπερπαραγγελιοδοσία (υποπαραγγελιοδοσία) 

όταν η συνολική ικανοποίηση του αγοραστή είναι υψηλή (χαμηλή) και επιλογή αγοραστών που 

μεγιστοποιούν τα τρέχοντα έσοδα (μελλοντική ζήτηση) όταν η συνολική ικανοποίηση των 

αγοραστών μετά τη ζήτηση είναι υψηλή (χαμηλή). Για να αντιμετωπίσουμε το πρόβλημα, 

δημιουργούμε τρεις πολιτικές δεικτών LR: μια πολιτική δείκτη Lagrange που χρησιμοποιεί μια 

ομοιόμορφη τιμή δυναμικότητας, μια πολιτική δείκτη Whittle που χρησιμοποιεί μια διακριτική 

τιμή δυναμικότητας και είναι μυωπικά βέλτιστη και μια καινοτόμα πολιτική δείκτη «ενεργού 

περιορισμού» που χρησιμοποιεί διακριτική τιμή δυναμικότητας όταν ο περιορισμός 
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δυναμικότητας είναι ενεργός. Τα αριθμητικά αποτελέσματα δείχνουν ότι η τελευταία πολιτική 

είναι σχεδόν βέλτιστη και υπερισχύει των άλλων δύο και ότι ο συνδυασμός της με τη 

κατάλληλη πολιτική FOQ, μπορεί να είναι πολύ αποτελεσματικός.  
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Abstract

This thesis deals with dynamic supplier policies under service-dependent demand.

The thesis is structured in three parts. Part 1 explores optimal dynamic inventory

policies when buyer purchase incidence is driven by past service, Part 2 looks at

supplier competition and cooperation for buyer loyalty on service, and Part 3 tackles

dynamic ordering and buyer selection when service affects future demand. A summary

of each part follows.

Part 1. A buyer exposed to a stockout may lose goodwill and be less inclined to

select the same supplier in his next procurement. Reversely, an in-stock experience

may restore the supplier’s prospect of being selected in the future. What should the

supplier’s inventory control policy be in this situation? To address this question, we

develop a multiperiod model of a buyer who selects a supplier with a probability that

depends on the supplier’s rating. This rating reflects the buyer’s goodwill towards the

supplier based on past service, measured in terms of in-stock/out-of-stock incidents,

and is updated by the buyer after each service. The supplier’s optimal inventory

policy partitions the inventory space in order-up-to and do-not-order intervals for

each rating. The optimal decision depends on whether ordering reduces the supplier’s

risk of being downgraded enough to offset the increase in her ordering and inventory

costs. We derive and evaluate bounds on the optimal policy and expose some of its

properties. We obtain conditions for the optimality of basestock policies and show

that such policies are optimal if there are only two ratings or if the buyer’s demand

is constant. Using our model, we impute the stockout cost in a newsvendor setting.

Numerical experiments suggest that (i) the supplier may benefit from holding more

inventory in intermediate than in extreme ratings, and from dealing with a buyer who

xv



responds less erratically to service, (ii) basestock policies are efficient, and (iii) using

an arbitrary stockout cost in the newsvendor setting can significantly hurt profits.

Part 2. A firm’s service-driven always-a-share behavior may have a significant ef-

fect on the competitive and cooperative inventory policies of its suppliers. To explore

this effect, we consider a model of a repeat buyer (she) sharing her patronage among

two heterogeneous newsvendor-type suppliers over an infinite horizon. To enjoy the

best service advantage, the buyer plays one supplier (him) against the other by re-

warding product availability with repurchase (loyalty) and punishing stockouts with

switching (disloyalty) in the next period. Faced with this behavior, the optimal order-

ing policy of each supplier is a basestock policy with a non-negative “active” basestock

level when the supplier has the buyer’s loyalty and a zero basestock level when he does

not. Under competition, the optimal active basestock level of each supplier is greater

than his myopic basestock level and increases in the other supplier’s active basestock

level. Under a mild condition, the active basestock levels of both suppliers have at

least one pure-strategy Nash equilibrium solution. If the suppliers cooperate, the

optimal active basestock level of the supplier with the highest/lowest myopic profit is

greater/smaller than his myopic basestock level. To better comprehend these results,

we apply them to the case where the buyer’s demand is exponentially distributed.

This allows us to obtain exact expressions for the optimal active basestock levels and

payoff functions, which we then use in a numerical sensitivity analysis. We conclude

with a discussion of the extension of the results to more than two suppliers.

Part 3. Make-to-stock suppliers with regular buyers must balance the cost of

overstocking against the cost arising from the buyers’ reactions when items are un-

available. In selecting which buyers to satisfy when shortages occur, they must weigh

the current revenue from the satisfied buyers against the loss in future demand from

the dissatisfied buyers. To provide insight and decision support on these trade-offs,

(i) we develop a novel newsvendor model of a firm with heterogeneous buyers with

service-dependent demand, (ii) we provide properties of the optimal ordering and

buyer selection decisions of the firm, and (iii) we derive a novel Lagrangian Relax-

ation (LR)-based index policy for selecting buyers and compare it with two other

LR-based index policies. The model concerns a firm that orders items for a group
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of repeat buyers who generate different revenues and visit the firm with different av-

erage rates that depend on whether they are satisfied or dissatisfied with their last

visit. The firm selects which buyers to serve if the demand exceeds the order quantity

(current capacity). For two buyers, we show that a fixed order quantity (FOQ) policy

and an index buyer selection policy are optimal. For more buyers, the optimal pol-

icy involves overstocking (understocking) when the overall buyer satisfaction is high

(low) and selecting buyers that maximize the current revenue (future demand) when

the overall buyer satisfaction after the demand is high (low). To tackle the prob-

lem, we derive three LR-based index policies: a Lagrangian index policy that uses

a uniform capacity price, a Whittle index policy that uses a discriminatory capacity

price and is myopically optimal, and a novel active-constraint index policy that uses

a discriminatory capacity price when the capacity constraint is active. Numerical

results indicate that the latter policy is near-optimal and outperforms the other two

and that combining it with the right FOQ policy can be very efficient.
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Chapter 1

Introduction

In this chapter, we introduce the topic of this thesis. In Section 1.1, we present

the background and motivation behind this work, in Section 1.2, we pose the main

questions that we address, in Section 1.3, we review the related literature, and in

Section 1.4, we summarize the main contributions of the thesis.

1.1 Background and motivation

Buyer reactions to service. Manufacturers and suppliers of industrial market

goods must balance the cost of overstocking against the cost arising from the buyers’

reactions when not enough products are available on demand. These reactions can

vary significantly depending on the extent of the inconvenience that stockouts cause,

which ranges from increased administrative costs to production disruptions to lost

sales damages. In the worst-case scenario, stockouts can cause an extraordinary

upheaval in entire industrial sectors, even the global economy, with factories around

the world limiting or even halting their operations, despite powerful demand for

their wares. This has been the case with the recent shortages of goods, such as

computer chips, construction materials, and many others, reflecting the disruption

of the COVID-19 pandemic and other catastrophic events, combined with decades

of companies limiting their inventories in the pursuit of Just-in-Time (Goodman and

Chokshi, 2021).

1
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Although the adverse impact of retailer stockouts on consumer behavior has been

researched extensively for over fifty years, the literature on buyer reactions to stock-

outs in B2B markets is scarce. According to an earlier survey, most buyers return

to their original suppliers after experiencing a stockout, but firms need to assess the

losses of those buyers who remain with an alternate source of supply that was pursued

because of a stockout (Dion and Banting, 1995). Another study reports empirical evi-

dence based on corporate financial data that firms are more inclined to avoid stockouts

with more inventory when profit margins are higher and that the likelihood of losing

the demand of disenfranchised buyers depends on the alternative sources of supply

that are available (Blazenko and Vandezande, 2003).

Multiple sourcing. Many firms use multiple sourcing to hedge against opera-

tional and disruption risks and stimulate competition among their suppliers (Minner,

2003; Tang, 2006; Svoboda, Minner and Yao, 2021). The trend toward multiple or

dual sourcing has been intensified in the aftermath of the COVID-19 pandemic and

other disasters (Alicke, Barriball, Foster, Mauhourat and Trautwein, 2022). Having

established multiple supply channels, they can easily switch their patronage from one

supplier to another, especially for products for which supplier switching costs are low.

Though having multiple suppliers for the same products can add complexity and cost

to a buyer, many of the risks of multiple sourcing can be mitigated by making sure

that the buyer is collaborating with high-quality suppliers.

To use multiple sourcing, buyers develop procurement strategies based on which

they select their supply partners. Using scorecard-based assessment methods, which

are readily available in most ERP systems (e.g., SAP (2022b); Oracle (2021)), they

evaluate potential suppliers against strategic criteria related to cost, quality, service,

social responsibility, risk, agility, etc., to create a shortlist of certified suppliers that

best meet the criteria. While cost optimization is still a critically important criterion

for supplier selection, in many cases, it is no longer at the top of the list (Tang,

2006). Companies are looking for partnerships that meet high standards in several

areas, with product quality and on-time delivery being among the leading criteria

(Bosch, 2020; Intel, 2020; Samsung, 2020).

Product availability in particular has emerged as a decisive selection factor in the
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wake of major catastrophic events that have exposed the vulnerability of companies

that rely heavily on one or a limited number of trading partners. Indicatively, during

the COVID-19 pandemic, nearly one-fifth of Wendy’s restaurants in the US run out of

beef due to severe meat shortages caused by COVID-19 outbreaks in meat processing

plants (Valinsky, 2020).

Often, the shortlist of suppliers is limited to two suppliers, because the additional

effort required to track the performance and manage the relationship with more sup-

pliers can become counterproductive. Also, as the number of suppliers increases, the

relationship developed with each supplier weakens, and the suppliers tend to pay

more attention to their other business partners, including the buyer’s competitors.

The predominance of dual sourcing over multiple sourcing is reflected in the inventory

control literature, where 70% of the publications consider dual sourcing and only 30%

look at multiple sourcing (Svoboda et al., 2021).

Supplier selection. Once a supplier base has been created at the strategic level,

the buyer must decide how to divide the demand among the suppliers at the opera-

tional level. Depending on the market context, the buyer may allocate the demand

to all the suppliers, select one supplier to fill it, or even announce the demand to all

the suppliers and award it to the first supplier who fills it (Armony and Plambeck,

2005). If the demand allocated to a supplier is not fully met, the missing items may

be substituted with compatible items from the same supplier, backordered, procured

via transshipment from another supplier, or canceled.

In some situations, the supplier uses flexible long-term supply contracts that im-

pose some restriction on the buyer, usually in the form of a commitment to purchase

certain minimum quantities (Tang and Tomlin, 2008). The most flexible commitment

is to specify a total minimum quantity where the buyer is allowed to place any order

in any period, as long as the cumulative orders across all periods exceed this quantity

(Bassok and Anupindi, 1997). This type of flexibility allows the buyer to occasionally

call on all suppliers and reassess their service. At the same time, it guarantees a

minimum level of trade for the suppliers, helping them to stay in business—therefore,

also keeping the buyer’s supply channels open—and giving them the opportunity
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to compete for a larger share of the demand by improving their service level. Ex-

amples of companies that preferentially allocate all their business to suppliers that

performed well in the past but hesitate to withdraw business from suppliers who

performed poorly are presented in Andrews and Barron (2016) in the context of a

dynamic favored supplier allocation rule.

In other situations, the buyer can leverage the demand allocation decision to foster

competition between the suppliers. This can be done by allocating the demand to the

suppliers based on either promised or past performance. The first approach has been

studied extensively in the following context. The buyer sets up a rule for allocating

the demand, and the suppliers compete for a share or all of the demand by offering

their price, capacity, service level, lead time, or some other performance measure,

depending on the rule. The allocation of demand based on past performance has been

less researched. Most of the literature in this area concerns firms that compete for

market share on service in a B2C environment. The market share of each firm evolves

smoothly over time as customers flow in and out of its customer pool depending on

the service they receive from the firm and its competitors.

To monitor suppliers and stimulate competition between them, many companies

use formal quantitative rating schemes (Li, Zhang and Fine, 2013). Such schemes are

commonplace in many ERP systems. For example, the Supplier Rating System of

Oracle’s PeopleSoft enables companies to group and weigh the KPIs of suppliers into

categories that are further weighted and grouped into an overall composite supplier

score. This score is then compared to a rating scale and assigned a rating, much like

a report card in school. For instance, a score 0–100 can be transformed to a rating

A–F using the following rating rule: A ≥ 90, B ≥ 80, C ≥ 70, D ≥ 60, F ≤ 59. The

supplier scorecard is constantly updated and accessible across the company and to

the supplier (Oracle, 2020).

While a supplier with a high rating clearly has an advantage over a competitor

with a lower rating, it is not obvious that the former supplier will always be selected

over the latter supplier, because the selection process can be highly uncertain due to

the buyers’ perceived difficulty in predicting supplier performance (Riedl, Kaufmann,

Zimmermann and Perols, 2013). Tang and Tomlin (2008) attribute this difficulty
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to the low visibility and control level of supply chain partners which reduces the

confidence of each partner in the information provided by the other partners. Despite

the seamless access to information enabled by technological advances, suppliers may

disguise the on-hand inventory or lead time that they quote to their buyers, and buyers

may inflate the demand forecasts that they provide to their suppliers (Christopher

and Lee, 2004). The uncertainty in supplier selection may be further amplified due

to the multiple decision makers it involves, e.g., it may be the outcome of an opinion

poll by the buyer’s purchasing managers (Benjaafar, Elahi and Donohue, 2007). As

a result of this uncertainty, the buyer’s request incidents may appear as random to

the supplier.

The issue of supplier selection has been extensively studied in the literature, mostly

from the buyer’s perspective, in the context of strategic supply chain contracting and

coordination. An important aspect that has been overlooked from the supplier’s

viewpoint is the buyers’ dynamic behavior in response to supplier service and in

particular stockout incidents. Designing inventory control policies that account for

the adverse effect of stockouts on buyer (or customer) goodwill and future demand has

long been a challenging issue for OR/OM researchers and practitioners. Traditionally,

a penalty cost or a service level constraint has been used to address this issue, but this

approach ignores the dependence of demand on stockouts. In the last two decades,

a stream of research has emerged, whose origins can be traced to the 1970s, that

endogenizes customer reaction to stockouts into the demand dynamics, predominantly

in B2C environments and at an aggregate-demand level.

Buyer selection. In addition to diverse reactions to stockouts, buyers also have

different margins due to customized pricing arising from differences in their market

power, agreement with the supplier, sales volume, location, etc. A recent study on

wholesale price discrimination reports empirical evidence from a market where some

buyers pay up to 70% more than others for the same good on the same day (Marshall,

2020).

In the face of the buyers’ heterogeneous demand dynamics and margins, firms

must dynamically decide how many items to order in advance of demand, given that

buyers may be at different satisfaction (goodwill) levels from previous encounters,
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and which buyers to select to satisfy if the order falls short of demand. To address

the adverse effect of stockouts on buyer goodwill and future demand, firms typically

use a penalty cost or a service level constraint. This cost is supposed to reflect the

impact on future demand due to the loss of buyer goodwill following a stockout, yet

the demand is almost always considered to be independent of past service.

Moreover, in practice, firms often prioritize buyers based on their past sales (Ca-

chon and Lariviere, 1999). This approach is also reflected in many ERP systems,

such as SAP (SAP, 2022a). Prioritization based on past sales has been found to

positively affect high-priority buyers (Homburg, Droll and Totzek, 2008) although

it may also potentially undermine profitability by inducing important buyers to feel

more entitled than grateful (Wetzel, Hammerschmidt and Zablah, 2014). When the

buyers’ demand is sensitive to past service, prioritizing buyers based on past sales

has the risk of becoming a self-fulfilling prophecy. That is, if up to a certain period,

buyer i happens to have higher past sales than buyer j and both buyers compete for

the same product, i will be selected, her total sales will further increase, and she will

be satisfied, positively impacting her expected future sales. On the other hand, the

total sales of buyer j will remain unchanged, and she will be dissatisfied, adversely

affecting her expected future sales. If buyer j happens to have higher sales than i up

to the same period, the tables will be turned and j instead of i will be selected.

Sheffi (2020) discusses several product-allocation schemes used at times of scarcity,

on the occasion of the global shortage of semiconductor chips triggered by the COVID-

19 pandemic. Among them are the fair treatment of all buyers and the prioritization

of powerful buyers such as Apple and Samsung, high-margin buyers, or vulnerable

buyers, especially when the product is essential to the buyer’s (or the buyer’s cus-

tomers’) survival. As is pointed out, the downside of these approaches is that they

ignore the long-term importance of a buyer to the firm.

1.2 Thesis questions

In view of the issues discussed in the previous section, and motivated by recent

technological advances that enable the collection and analysis of big data on individual
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customers, allowing for identifying their unique repurchase behavior at different levels

of rated satisfaction (Mittal and Kamakura, 2001) or following stockouts (Fitzsimons,

2000), different types of decision-making problems and questions arise for suppliers

facing service-dependent demand. In the main part of this thesis (Chapters 2–4), we

consider three such problems, each focusing on a different setting and set of questions.

In Chapter 2, we focus on the asymmetric responses to good and bad service of

a buyer with memory of past service and its implications on the inventory policy of

the supplier. More specifically, we consider the problem of a buyer who uses a rating

scheme with a finite number of ratings, e.g., A–F, as mentioned earlier, and visits a

supplier with a rating-dependent probability, uprating/derating the supplier after an

in-stock/out-of-stock incidence. The questions that we ask are:

� What is the structure of the supplier’s optimal inventory policy as a function

of her inventory and rating?

� Can a basestock policy be optimal, and if so, under what conditions?

� Should the supplier stock more when her rating is low or high?

� What is the imputed cost of a stockout under the buyer’s rating-dependent visit

behavior?

In Chapter 3, we focus on the switching behavior of a buyer from one supplier

to another following poor service and its implication on the suppliers’ competitive

inventory policy, in a B2B setting. The setting that we consider fits the description

of the always-a-share model introduced in Jackson (1985), which assumes that a firm

making purchases of some product category repeatedly can easily switch its patronage

from one supplier to another, therefore sharing its patronage among multiple suppli-

ers. Jackson notes that in some situations suggesting always-a-share behavior, a firm

may make a series of purchases each from a single supplier but share its patronage

among suppliers over time. As examples of always-a-share firms, she lists buyers of

simple machine tools, commodity chemicals, carbon steel, and apartment building

owners who purchase major appliances, among others. Jackson (1985) contrasts the

always-a-share model with the lost-for-good model, where a firm faces high costs of
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switching suppliers and therefore is either totally committed to one supplier or totally

lost and committed to some other supplier. That setting is outside the scope of this

paper. Given the buyer’s always-a-share behavior, we pose the following questions:

� What is the optimal inventory policy of each supplier in response to the other

supplier’s decision?

� Do the suppliers’ inventory policies reach equilibrium and if so, is it unique, and

how is it related to their myopic inventory policy?

� What is the optimal joint inventory policy and gain for the suppliers if they

team up?

� What are the implications for the buyer if the suppliers cooperate instead of

competing?

In Chapter 4, we focus on the dynamic ordering and buyer selection decisions of

a supplier with many buyers with service-dependent demand. These decisions require

the careful balancing of the ordering cost, the current revenue from the satisfied

buyers, and the loss in future demand from the dissatisfied buyers, raising several

important questions for the supplier:

� What is the interaction between ordering and buyer selection decisions?

� How sensitive is performance to each decision?

� When does future demand matter more than the current revenue in buyer se-

lection?

� How efficient is it to order a fixed quantity and how efficient is it to select buyers

based on a fixed prioritization?

1.3 Literature review

In this section, we review the literature that is related to our work. For ease of

presentation, we organize it into three parts.
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Service-driven demand. The first model in which demand changes dynami-

cally as a function of the service level can be traced to Fergani (1976). In the last

two decades, there has been a renewed interest in similar dynamic demand models,

matching the increasing evidence from data-driven marketing studies that stockouts

have an adverse effect on long-term demand Campo, Gijsbrechts and Nisol (2003);

Anderson, Fitzimons and Simester (2006); Jing and Lewis (2011). Dynamic models

can be divided into two categories. The first considers demand at an aggregate level

and the second focuses on the individual customer level.

Notable papers in the first category are Fergani (1976), Hall and Porteus (2000),

Liu, Shang and Wu (2007), and Olsen and Parker (2008). These studies consider

single-supplier models or duopolies, where the demand of each supplier in each period

is a linear function of the market size. This assumption is key for ensuring the

optimality of basestock policies with basestock levels that are proportional to the

market size. They also assume that individual customers behave homogeneously

toward each supplier and have no memory of past service. Robinson (2016) considers

a more general demand model where in each period the mean demand changes linearly

in the number of satisfied and unsatisfied customers. The optimal policy for this model

is not in general stationary and will vary with the mean demand, which may increase

or decrease unboundedly; therefore, finding it is computationally intractable.

Notable papers in the second category are Gans (2002), Gaur and Park (2007),

Liberopoulos and Tsikis (2007), and Deng, Shen and Shanthikumar (2014). The first

two papers consider multiperiod models with multiple customers and suppliers, where

each supplier maintains a constant service level, and the customers learn about this

level from experience. Liberopoulos and Tsikis (2007) introduce a duopoly model of

two suppliers competing for one customer. Each supplier can be in any of several

“credibility levels” that affect the probability of being chosen by the customer. The

evolution of these levels depends on the service experiences of the customer. Based

on a restricted numerical study, they find that for geometrically distributed demand,

the optimal stationary policy of the two suppliers at equilibrium is a basestock policy.

Deng et al. (2014) consider a similar model to that in Liberopoulos and Tsikis (2007)

involving a single supplier with several customers. In each period, each customer
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demands exactly one unit with a probability that depends on his contentment level,

which can be in any of two states: satisfied or unsatisfied. They show that the optimal

inventory level always increases in the number of satisfied customers.

Supplier competition. Numerous papers explore how a single buyer can stim-

ulate competition among multiple suppliers by allocating her demand to the suppli-

ers based on their price, service quality, or other competitive dimensions. In Kalai,

Kamien and Rubinovitch (1992), Gilbert and Weng (1998), Cachon and Zhang (2007),

Benjaafar et al. (2007), and Elahi (2013), the suppliers are modeled as Make-to-Order

(MTO) or Make-to-Stock (MTS) service systems, and the buyer allocates her demand

to the suppliers based on their service quality, measured in terms of service rate, lead

time, or service level, or assigns all the demand to a randomly selected supplier, where

the probability of selecting a supplier is based on the supplier’s service quality. In Ha,

Li and Ng (2003) and Jin and Ryan (2012), the suppliers are modeled as EOQ firms

and MTS queues, respectively, and demand is allocated based on price and delivery

frequency or price and service level, respectively. In many cases, it turns out that

allocating the demand to one supplier, i.e., selecting a supplier, is optimal for the

buyer. A review of some of these models can be found in Wang, Eallace, Shen and

Choi (2015).

Some papers investigate the sourcing strategy of a buyer and the pricing strategies

of unreliable suppliers under an environment of supply disruption (Babich, Burnetas

and Ritchken, 2007; Li, Wang and Cheng, 2010). There is also a sizable literature

on newsvendor competition as is manifested by the review articles that have ap-

peared in the last two decades (Cachon and Zhang, 2006; Nagarajan and Sošić, 2008;

Chinchuluun, Karakitsiou and Mavrommati, 2008; Silbermayr, 2020). Much of this

work involves lateral transshipments, consolidation of inventories at a central loca-

tion, and product substitution or complementarity in case of a stockout. In all of

these works, the buyer has no memory of service, so the models are essentially single-

period. Dynamic volume allocation in an infinite-horizon setting is considered in Li

et al. (2013) in a problem in which the buyer induces the desired supplier behavior

through business share allocation based on supplier performance.

Buyer selection. The problem of heterogeneous customer selection has been
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extensively studied under the assumption that service does not affect demand. Two

paradigms of selection problems are the inverse newsvendor Carr and Lovejoy (2000);

Choi and Ketzenberg (2018); Bavafa, Leys, Örmeci and Savin (2019) and the selective

newsvendor Taaffe, Romeijn and Tirumalasetty (2008); Taaffe et al. (2008); Chahar

and Taaffe (2009); Abdel-Aal and Selim (2019). In the first problem, a firm with a

given service level and several customer classes, each with a predefined priority and a

random demand, must choose the fraction of each class to serve, i.e., it must choose

the demand distribution. In the second problem, a newsvendor serving multiple

buyers must decide the order quantity and select which buyers to serve. The demand

of each buyer is influenced by the marketing or pricing effort, and buyer selection

takes place before the demand realization. In a related paper, Durango-Cohen and

Li (2017) consider a supplier who must decide her order quantity and allocate it to

several heterogeneous customers with contracts to demand within a specified range

and the right to receive a penalty for any unmet demand within that range.

Another stream of research focuses on the strategic competition of customers

under a given capacity allocation policy of the supplier. An example is the turn-and-

earn policy where the supplier allocates capacity to customers based on past sales,

motivating customers to influence their future allocations by increasing their sales

Cachon and Lariviere (1999); Lu and Lariviere (2012).

Adelman and Mersereau (2013) consider the problem of a supplier who must dy-

namically allocate capacity among a finite number of heterogeneous customers with

different margins and different demands that depend on past fill rates. They inves-

tigate when and how goodwill matters and they demonstrate that an approximate

dynamic programming policy that rationalizes the fill rates that the firm provides

to each customer can achieve higher rewards than margin-greedy and Lagrangian-

derived policies. They interpret this policy as prioritizing each customer using an

“adjusted margin” that augments the customer’s margin by an amount that values

the goodwill impact of meeting current demand.

Moreover, Klein and Kolb (2015) considers a provider with several customers,

each belonging to one of a finite number of segments defined by a combination of cus-

tomer properties, recency, and purchase intention. The provider must decide which
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customers with positive purchase intention to accept and which to deny. The prob-

lem is formulated as an MDP where the provider’s action determines the transition

probability of each customer from one segment to another, and the overall state is the

number of customers in each segment. A myopic policy that maximizes the current

revenue is compared with the optimal MDP solution in a numerical study of a prob-

lem with up to two customer properties and two recency states. In both papers, the

firm’s capacity is fixed. None of the two papers provides analytical results on the op-

timal policy, although Adelman and Mersereau (2013) shows that the margin-greedy

policy is asymptotically optimal when the number of customers tends to infinity, and

optimal when the demand is deterministic.

1.4 Thesis organization and contributions

The main contribution of this thesis is the development and analysis of three novel

stochastic models, presented in Chapters 2–4, that provide insight and decision sup-

port for firms (suppliers) facing service-dependent demand. The main questions that

each model addresses were presented in Section 1.2. In this section, we briefly describe

each model and the main conclusions that we draw from its analysis.

In Chapter 2, we develop a multiperiod model of a supplier (she) selling items

to a buyer (he) who rates the supplier based on the history of her service, measured

in terms of in-stock/out-of-stock incidents. At the beginning of each period, the

supplier orders a quantity, ahead of the demand, based on her rating and inventory

surplus/backlog, and receives it before the end of the period. At the end of the period,

the buyer generates a random demand and selects the supplier to fill this demand with

a probability that depends on her rating. If the supplier fails to meet all the demand

at once, the buyer backorders the unmet demand with her but downgrades her. In

addition, the supplier incurs a backorder penalty cost that is proportional to the

shortage. This cost is a direct measurable cost of the shortage, e.g., a price discount

per item short or an overtime cost for the procurement and handling of the backlogged

items. If the supplier meets all the demand at once, she is upgraded by the buyer and

carries over any leftover inventory to the next period. Using dynamic programming
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principles and Markov chain analysis, we draw the following conclusions regarding

the supplier’s inventory control policy.

Myopic policy. The supplier’s myopic (single-period) inventory control policy is a

basestock policy with non-negative, rating-dependent basestock levels that are non-

decreasing in her rating.

Structure of optimal policy. For the infinite-horizon discounted expected profit

problem, the optimal policy partitions the inventory space in multiple order-up-to

and do-not-order intervals, defined by successive order-up-to and reorder points, for

each rating. The optimal decision—order up to the next point or do not order—

depends on whether ordering reduces the supplier’s risk of being downgraded enough

to offset the increase in her ordering and inventory holding costs. This tradeoff

depends both on the supplier’s inventory level and the probability density function of

the buyer’s demand. We show that the smallest order-up-to-point for each rating is

greater than or equal to the basestock level of the myopic policy for that rating. This

implies that it is optimal to satisfy all backorders and that using the myopic policy

will lead to profit losses. Unlike the basestock levels of the myopic policy, the smallest

order-up-to points are not necessarily non-decreasing in the rating, even though the

discounted expected profit is. Numerical results show that it can be optimal for the

supplier to hold more inventory in intermediate ratings than in extreme ratings and

that the more erratic the buyer’s response to service, the higher the inventory level.

Bounds on optimal policy. We derive upper and lower bounds on the optimal

inventory control policy and numerically evaluate them and compare them against

existing bounds. Our results show that in many instances, a heuristic basestock

policy with rating-dependent basestock levels that are higher than the respective

myopic levels and are non-decreasing in the rating, is near-optimal.

Optimality of basestock policies. We show that under a certain condition on the

buyer demand distribution, the optimal policy reduces to a basestock policy with

non-negative, rating-dependent basestock levels. This condition is always satisfied if

the demand density function is non-increasing. We also present a condition for the

optimality of a policy that is effectively basestock. Two special cases of this condition

arise when either the smallest order-up-to points or the smallest reorder points are
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increasing in the rating. We show that the smallest order-up-to points for the first two

ratings are always increasing in the rating, implying that in the case of two ratings,

a basestock policy is effectively optimal. For this case, we also derive analytical

expressions for computing these points and evaluate them for two distributions of

buyer demand (exponential and uniform).

Constant buyer demand. For the case of constant buyer demand, we show that

for the average expected profit problem, the optimal policy is a basestock policy in

which the supplier: (i) always operates in a make-to-stock mode with no backlogs

and her rating is absorbed in the largest level, (ii) always operates in a make-to-order

mode only with backlogs, and her rating is absorbed in the smallest level, or (iii)

operates in a make-to-stock mode in all ratings, except for the largest rating where

she operates in a make-to-order mode, and her rating is absorbed in the largest two

values, alternating between them. We derive conditions for determining which of

the three above cases is optimal. These conditions depend on the supplier selection

probabilities in the largest, second largest, and smallest rating only, as well as on the

revenue and cost parameters. We show that in the case of two ratings, the policy of

alternating between the two ratings is never optimal.

Fixed stockout cost. Finally, we consider a variant of the newsvendor model studied

in Çetinkaya and Parlar (1998), with a fixed stockout cost, representing the buyer’s

loss of goodwill due to a stockout, in addition to the variable backorder cost. To

estimate the fixed cost, we relate this model to the service-driven demand model

developed in this chapter, operated under a basestock policy with a common basestock

level for all ratings. Numerical results for different functional forms of the supplier

selection probability w.r.t. to the rating show that if the imputed fixed cost is used in

the newsvendor model to compute the optimal basestock level, the drop in the average

expected profit with respect to the maximum profit is limited on average. However,

choosing an arbitrary value for the fixed stockout cost can lead to significant profit

losses, especially if this value is smaller than the imputed value.

In Chapter 3, we develop a stylized model of two newsvendor-type suppliers

with inventory carryover and backordering (we also discuss the extension to multiple
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suppliers) who provide the same product to an always-a-share buyer (she) and com-

pete for the buyer’s business over an infinite horizon. There is little room for price

differentiation because the product is standard and the suppliers have anyway been

shortlisted among a larger group of candidates based on their more or less equally

competitive prices. Therefore, the suppliers compete on the service they provide.

Among the various determinants of service quality, we restrict our attention to

product availability which has emerged as a decisive factor in the wake of severe global

shortages that have exposed the vulnerability of supply chains to the disruption of

major catastrophic events.

To enjoy the best availability advantage, the buyer in our model plays one sup-

plier (him) against the other by rewarding availability with repurchase (loyalty) and

punishing stockouts with switching (disloyalty) in the next period. Faced with this

“carrot-and-stick” behavior, each supplier must decide his ordering policy to max-

imize his long-run expected average profit by balancing his current inventory and

backorder cost against his future profit loss resulting from ceding the buyer’s loyalty

to his competitor.

Using stochastic optimization and game-theoretic analysis, we characterize the

optimal inventory policy of the suppliers under competition and relate it to their

myopic policy. To measure the service level gain of the buyer and the respective

profit loss of the suppliers brought about by competition, we also characterize the

optimal joint policy of the suppliers if they decide to cooperate. To better comprehend

the results and their implications, we apply them and evaluate them numerically in

the case where the buyer’s demand is exponentially distributed. Finally, we extend

the results to more than two suppliers under a round-robin supplier selection policy.

Based on our results, we draw the following conclusions.

Optimal inventory policy. The myopic policy of each supplier is identical to the

basestock policy of a multi-period newsvendor who seeks to minimize his expected

inventory and backorder cost. The optimal inventory policy of each supplier under

competition and cooperation is also a basestock policy with a non–negative “active”

basestock level when the supplier has the buyer’s loyalty and a zero basestock level

when he does not.
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Competition. Under competition, each supplier raises his active basestock level

above his myopic level, sacrificing his myopic profit to extend his stay at the top of the

buyer’s list. The optimal active basestock level of each supplier is increasing in the

other supplier’s active level, sparking inventory competition between the suppliers to

the buyer’s advantage. Under a mild condition on the buyer’s demand distribution,

implying that the demand density function does not increase sharply above each

supplier’s myopic basestock level, the best response of each supplier has a unique

global maximizer above his myopic basestock level that guarantees the existence of

a pure-strategy Nash equilibrium which is symmetric for symmetric suppliers. The

equilibrium is unique if the suppliers’ best response functions are contraction map-

pings or if the suppliers are symmetric (under a stricter condition on the buyer’s

demand distribution).

Cooperation. Under cooperation, each supplier sets his active basestock level at

his myopic level, if the myopic profits of both suppliers are the same. Otherwise,

the supplier who has the smallest myopic profit, sets his active basestock level below

his myopic level, ceding a part of his long-term demand share to the more profitable

supplier, who sets his active basestock level above his myopic level but below his

active basestock level at equilibrium under competition. Under a condition that

again involves the buyer’s demand density function, the active basestock level of the

less profitable supplier drops to zero, meaning that this supplier cedes all his demand

share to the more profitable supplier, except for the occasional times when the buyer

returns to him for one period following a stockout by the more profitable supplier.

The buyer’s perspective. Cooperation benefits the suppliers as it results in re-

duced inventories for them. This cancels out the high–fill rate advantage that the

buyer enjoys thanks to her carrot-and-stick behavior when the suppliers compete. To

counter this setback, the buyer can charge the cooperating suppliers an extra backo-

rder penalty cost rate every time she faces a stockout. For symmetric suppliers, the

penalty rate that makes the buyer fully recover her fill rate under competition is in-

creasing in the symmetric active basestock level of the suppliers at equilibrium, which

hinges on the buyer’s demand distribution and the suppliers’ margin-to-interest-rate

ratio.
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Exponentially distributed demand. When the buyer’s demand is exponentially

distributed, the conditions guaranteeing the uniqueness of the maximizer of the best

response function of each supplier and the Nash equilibrium are satisfied. In this case,

we obtain exact expressions for the active basestock levels at equilibrium and under

cooperation. The former expressions depend mainly on the tradeoff between the

supplier’s inventory cost rate and profit margin, while the latter expressions depend

on the tradeoff between the suppliers’ inventory and backorder cost rates.

Multiple sourcing. Most of the general results for two suppliers extend to multiple

suppliers if the buyer uses a round-robin policy where she switches suppliers on a

circular basis after each stockout.

In Chapter 4, we study a newsvendor model of a firm that orders items for a

group of repeat buyers. The buyers generate different revenues and have different

average visit rates that depend on whether they are satisfied or dissatisfied with their

last visit. If the demand exceeds the order quantity (current capacity), the firm

must select which buyers to serve without violating capacity. We formulate the firm’s

problem as an average-profit Markov decision process (MDP) whose state is the vector

of buyer satisfaction states and where the decisions are made in two stages: Before

the demand is realized (ex-ante), the firm must decide its order quantity, and after

the demand takes place (ex-post), it must select which buyers to serve.

Using stochastic analysis, we characterize the myopic policy and the optimal policy

for two buyers, and we provide some properties and conjectures on the optimal policy

for multiple buyers. We also numerically compare three Lagrangian relaxation-based

index policies for selecting buyers, where an index policy is defined as an ex-ante

prioritization of buyers based on the value of some function (index). The three policies

are the Lagrangian index, the Whittle index, and the active-constraint index policy.

The index in each policy is derived by relaxing the capacity constraint of the original

problem and solving a separate problem for each buyer using a penalty price that

internalizes the relaxed constraint.

In the Lagrangian index, the price is uniform (common for all buyers) and arbi-

trary. The price that we use in our numerical experiments is derived in closed form

as the solution of the Lagrangian dual. This price depends on capacity and yields the
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tightest bound of the original problem. In the Whittle index, the price is discrimina-

tory (buyer-specific) and independent of capacity. In the active-constraint index, the

price is also discriminatory red but is applied only when demand exceeds capacity, so

it depends on both capacity and the demand characteristics of all buyers. Based on

our results, we draw the following conclusions.

Optimal buyer selection. When the order quantity suffices to cover the demand

of all but one buyer, the optimal selection policy is an index policy where the index

of each buyer (she) is increasing in three terms: her revenue rate, the loss in her

future demand (average visit rate) if she is not served, and the type-I service level of

all other buyers if she is served. This result enables the full characterization of the

optimal selection policy for two buyers. In general, however, the optimal selection is

not index-based but depends on the realization of demand. Our analysis shows that

it tends to maximize the current revenue if the buyers’ ex-post satisfaction level is

high and maximize future demand if it is low.

Index-based selection. The three Lagrangian relaxation-based index policies that

we compare have varying degrees of efficiency depending on how well they internalize

the relaxed constraint into the index. The Whittle index is simply the revenue rate, so

it does not internalize capacity. Prioritizing buyers based on their revenue rates, while

myopically optimal, can be arbitrarily bad in the long term because it ignores future

demand. The Lagrangian index outperforms the Whittle index because it accounts

for the loss in future demand and leads to the required usage of capacity on average

through the uniform price that it uses.

The active-constraint index depends on the same three terms as the optimal index

for the above-mentioned case where the order quantity is enough to cover the demand

of all but one buyer and is optimal in that case. The third term in particular accounts

for the effect of the selection of one buyer on the stockout probability of the other

buyers, based on their satisfaction states. It makes the firm dynamically readjust

its goal between maximizing the current revenue and future demand based on the

ex-ante satisfaction state vector, echoing the observed optimal policy, and leading

to more well-balanced satisfaction states and service levels among the buyers. Our

numerical results show that the active-constraint index policy is near-optimal.
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Optimal and fixed order quantities. Under optimal buyer selection, the optimal

order quantity is non-decreasing in the satisfaction state, matching supply to demand.

If buyers are selected red suboptimally, the firm may benefit from ordering fewer items

in higher satisfaction states if this allows it to reach more profitable states which

cannot be approached with the suboptimal selection policy.

For two buyers, the optimal order quantity is fixed for all satisfaction states,

under the optimal buyer selection. If the firm selects buyers inefficiently, the fixed

order quantity may increase or decrease as the firm tries to make up for the loss

of efficiency by overstocking or understocking, respectively. This means that it may

prefer to satisfy both buyers all the time or not satisfy any buyer at all rather than

prioritize the wrong buyer. For more buyers, using a fixed order quantity can be quite

efficient if this quantity is optimally chosen, but can lead to severe losses if it is not.

Finally, Chapter 5 provides a summary of our main findings.

Supplemental material for Chapters 2–4, including proofs, can be found in Ap-

pendices A–C, respectively.



Chapter 2

Inventory policies when buyer

demand is driven by past service

2.1 Introduction

In this chapter, we develop a multiperiod model of a supplier (she) selling items to

a buyer (he) who rates the supplier based on the history of her service, measured

in terms of in-stock/out-of-stock incidents. In Section 2.2, we develop the service-

driven demand model. In Section 2.3, we determine the myopic policy, derive bounds

on the optimal policy for the infinite-horizon problem, and present the structure and

properties of the optimal policy. In Section 2.4, we explore the optimality of basestock

policies, and in Section 2.5, we characterize the optimal policy for the constant-

demand case. In Section 2.6, we impute the fixed stockout cost in the newsvendor

model from the service-driven demand model developed in Section 2.2. In Section

2.7, we present numerical results, and in Section 2.8, we summarize the results and

propose directions for future work. Supplemental material for this chapter, including

proofs, can be found in Appendix A.

20
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2.2 Model description

A profit-maximizing supplier sells items to a buyer. The buyer rates the supplier based

on the history of her service, defined in terms of in-stock/out-of-stock incidents. In

each period t, the supplier orders a non-negative quantity based on her current rating

αt and inventory level xt; αt belongs to a finite set of discrete values A = {1, . . . ,M},
e.g., as in the A–F score system mentioned earlier, and xt can be positive or negative,

indicating surplus or backlog, respectively. Due to her lead time, the supplier places

her order at the beginning of the period, ahead of the buyer’s demand, in a make-

to-stock mode Benjaafar et al. (2007). This type of ordering process is common

in practice including the computer and apparel industries Tang and Tomlin (2008),

where manufacturers “preposition” (produce or purchase prior to demand and hold

inventory) buyer-specific, semi-finished components with long lead times that are

incorporated into end-products with much shorter lead times, e.g., ICs for specific

types of printers, or greige fabric (a fabric that has been woven or knitted but not

yet dyed or printed) for specific types of sports garments. The order arrives before

the end of the period, raising the supplier’s inventory level to yt ≥ xt.

At the end of the period, the buyer demands a quantity wt and selects the supplier,

with probability qαt , or an outside source, with probability q̄αt = 1 − qαt , to fill

this demand; qαt is referred to as the rating-dependent selection probability of the

supplier. The demands {wt, t = 0, 1, . . .} are based on the buyer’s needs and are

independent of the supplier’s past service. We assume that they i.i.d. continuous

random variables with p.d.f., c.d.f., and mean, f(·), F (·), and θ, respectively. Based
on these assumptions, the demand seen by the supplier in period t, dt(αt), is given

by

dt(αt) =

{
wt, w.p. qαt ,

0, w.p. q̄αt .
(2.1)

For notational simplicity, henceforth we will drop the dependence of dt(αt) on αt. If

the supplier is not selected by the buyer, her rating remains unchanged. If she is

selected, she fills all the demand or the part of it that she can cover from inventory.

If she fails to meet all the demand at once, the buyer backorders the unmet demand
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with her to ensure the uniformity and traceability of his order and receives the missing

items in the next period. In this case, the supplier incurs a backorder penalty cost

that is proportional to the shortage. At the same time, the buyer downgrades the

supplier by one rating point (unless her rating is already at its lowest value) due to

the overall disruption that the missing items cause him.

The notion that a stockout incident has a fixed adverse effect on the supplier’s

standing, irrespectively of the shortage quantity or time, has been addressed in the

literature by assuming a “lumpsum,” “red-tape,” or “negative image” fixed cost per

stockout occasion Çetinkaya and Parlar (1998) or a “type-1” service constraint impos-

ing a minimum probability that demand will be immediately served from inventory.

An example of this effect is when a production line is stopped whether 1 unit or 100

units are short Nahmias and Olsen (2015). Another example is when a supplier faces

buyer loss if the demand from a buyer cannot be met a certain number of times, as in

the case of a pharmaceutical distributor selling medicines to pharmacies Saracoglu,

Topaloglu and Keskinturk (2014). In our model, we incorporate this effect into the

demand dynamics through the rating process.

If the supplier meets all the demand at once, she is upgraded by one rating point

(unless her rating is already at its highest value, M), and carries over any leftover

inventory to the next period. By holding inventory, she expects to fully meet the

buyer’s demand in the next period and improve or maintain her rating. Alternatively,

she may choose not to hold inventory, in which case she will operate in a make-to-order

mode, compromising her rating. Reserving inventory for a specific buyer is not that

unusual, especially if this buyer has agreed to purchase a minimum order quantity

per period on average or has a predominant position among the supplier’s partners.

Competition that breeds demand for customized make-to-stock is also reported in

cases where a buyer places duplicate orders to several suppliers and buys from the

supplier who fills the order first, canceling all other orders Li (1992). This practice

is common for microchip suppliers in the semiconductor industry where yields and

processing times are unpredictable, lead times are long, and products are highly

customized. A similar practice for network product suppliers is reported in Armony

and Plambeck (2005).
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Based on the above assumptions, the supplier’s inventory state is updated as

follows,

xt+1 = yt − dt =

{
yt − wt, w.p. qαt ,

yt, w.p. q̄αt ,
(2.2)

and the supplier’s rating state is updated as follows,

αt+1 =

{
αt + δ+αt

− δ−αt
, w.p. qαt ,

αt, w.p. q̄αt ,
(2.3)

where

δ+αt
= 1{wt≤yt,αt<M} and δ−αt

= 1{wt>yt,αt>1}, (2.4)

and 1{·} is the indicator function.

As is natural to assume, the probability that the buyer selects the supplier is

non-decreasing in the supplier’s rating. We also assume that the buyer may select

the supplier even if her rating is at the lowest level. This would be the case, e.g., if

the two parties had agreed on a minimum average order quantity per period, q1θ. In

mathematical terms,

qα+1 ≥ qα, α ∈ {1, . . . ,M − 1} and q1 > 0. (2.5)

While the selection probability is non-decreasing in the supplier’s rating, its exact

functional form is not restricted and depends on the buyer’s response to service. Such

a response may in general be asymmetric, as has been documented in the behavioral

economics literature in a B2C context Kahneman and Tversky (1979). Indicatively,

in a recent study of supermarket consumers, Koos and Shaikh (2019) reports an

asymmetric S-shape relationship between customer dissatisfaction due to stockouts

and customer response. A different large-scale study of automotive customers finds

that the functional form relating rated satisfaction to repurchase behavior exhibits

increasing returns Mittal and Kamakura (2001). On the other hand, under loss-

aversion Tversky and Kahneman (1991), the functional form should exhibit decreasing
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returns. These behaviors are different and depend on the buyer’s characteristics and

the market context. The proposed model is flexible and can accommodate different

behavioral patterns whether the setting is B2C or B2B.

In each period, the supplier incurs a cost c per item ordered and receives a revenue

r per item sold. The quantity sold is min(yt, dt). She also incurs an inventory holding

cost h per item in inventory and backorder cost b per item short, at the end of the

period. We assume discounting with rate β < 1. To ensure that the supplier can be

profitable even with backorders, we also assume that βp > b, where p is the per unit

profit defined as p = r − c.

The profit of the supplier in period t is r[(xt)
− + min(yt, dt)] − c(yt − xt) − h(yt −

dt)
+− b(dt− yt)

+, where (x)+ = max(x, 0) and (x)− = (−x)+, x ∈ R. After replacing
min(yt, dt) and (yt − dt)

+ with dt − (dt − yt)
+ and yt − dt + (dt − yt)

+, respectively,

and rearranging terms, the profit can be written as r(xt)
− + cxt + (r + h)dt − (c +

h)yt − (r + b + h)(dt − yt)
+. Rolling back the terms r(xt)

− and cxt into period

t − 1 using (2.2) and discounting them at rate β, the profit can be redefined as

βr(xt+1)
−+βcxt+1+(r+h)dt− (c+h)yt− (r+ b+h)(dt−yt)+ (see Olsen and Parker

(2008) and Robinson (2016) for similar treatments). For t = 0, r(x0)
− and cx0 are

not rolled back but are added to the total profit as an extra term r(x0)
−+ cx0, which

can be rewritten as c(x0)
+ + p(x0)

−, after replacing x0 with (x0)
+ − (x0)

−. Finally,

after replacing xt+1 and (xt+1)
− with yt−dt and (dt−yt)+, respectively, and collecting

terms, the redefined profit in period t reduces to:

K3dt −K1yt −K2(dt − yt)
+,

where K1, K2, and K3 are positive constants given by

K1 = (1− β)c+ h, (2.6)

K2 = (1− β)r + b+ h = K1 + (1− β)p+ b, (2.7)

K3 = (r − βc+ h) = K1 + p. (2.8)

Essentially, the redefined profit in period t refers to the profit in the interval starting
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after the arrival of the supplier’s order in period t and ending before the arrival of

her order in period t + 1; so, it is expressed in terms of yt instead of xt. From the

above definitions and the assumption βp > b, K1, K2, and K3 are ordered as follows:

0 < K1 < K2 < K3. (2.9)

The problem of the supplier is to select order-up-to levels yt ≥ xt, t = 0, 1, . . . , to

maximize her discounted expected profit over an infinite horizon, Πα0(x0), defined as

Πα0(x0) = c(x0)
+ + p(x0)

− + Vα0(x0), (2.10)

where Vα0(x0) is a value function given by

Vα0(x0) = max
yt≥xt

Edt

{
∞∑
t=0

βt
[
K3dt −K1yt −K2(dt − yt)

+
]}

.

The term in the square brackets is the redefined profit in period t. Its expected value,

denoted by Λαt(yt), is given by

Λαt(yt) = K3qαtθ − Lαt(yt), (2.11)

where Lαt(yt) is the expected cost of the supplier in period t and is given by

Lαt(yt) = K1yt +K2

[
qαtB(yt) + q̄αt(yt)

−] , (2.12)

with B(y) denoting the expected backlog, defined as B(y) = E[(w−y)+]. With these

definitions, Vα0(x0) can be rewritten as

Vα0(x0) = max
yt≥xt

{
∞∑
t=0

βtΛαt(yt)

}
.

The value function Vαt(xt), in any period t, satisfies the following dynamic pro-

gramming (Bellman) equation:
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Vαt(xt) = max
yt≥xt

{
Λαt(yt) + βEdt

[
Vαt+1(xt+1)

]}
, xt ∈ R, αt ∈ A. (2.13)

Given the boundedness of Λαt(yt) and Vαt(xt), equation (2.13) has a unique solution.

From (2.11) and (2.2)-(2.4), the Bellman equation can be written as follows, after

dropping the time index:

Vα(x) = K3qαθ +max
y≥x

Hα(y), x ∈ R, α ∈ A, (2.14)

where

Hα(y) = −Lα(y) + β

{
qα[

∫ y

0

Vα+δ+α
(y − w)dF (w)

+

∫ ∞

y

Vα−δ−α
(y − w)dF (w)] + q̄αVα(y)

}
. (2.15)

2.3 Properties and structure of the optimal policy

Before setting out to characterize the optimal stationary inventory control policy for

the infinite-horizon problem, y∗α(x), we determine the optimal policy for the single-

period problem—henceforth referred to as the myopic policy—denoted by ymy
α (x).

Proposition 2.1. The myopic policy is a basestock policy given by

ymy
α (x) = max(x, Smy

α ), (2.16)

where the rating-dependent basestock levels Smy
α , α ∈ A, are given by

Smy
α = F−1

([
1− K1

qαK2

]+)
. (2.17)

Note that K1/K2 in (2.17) is the well-known critical ratio in the newsvendor

model with surplus cost K1 and backlog cost K2 −K1. This ratio is independent of

α. What makes Smy
α dependent on α is qα in (2.17). From (2.5) and (2.17), Smy

α is

non-decreasing in α. The following proposition provides properties and bounds on
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Πα0(x0) and Vα0(x0) for the infinite-horizon problem, where for notational simplicity

we have dropped the time index.

Proposition 2.2. For α ∈ A and x ∈ R, Πα(x) and Vα(x) satisfy

lim
x→∞

Πα(x) = lim
x→∞

Vα(x) = −∞, (2.18)

Vα(0) > 0, (2.19)

Vα′(x) ≥ Vα(x), α
′ > α, (2.20)

Πα′(x) ≥ Πα(x), α
′ > α, (2.21)

−h(x− Sα)
+

1− β
+ V L

α (Sα) ≤ Vα(x) ≤ V U
α (Smy

α ), (2.22)

c(x)+ + p(x)− − h(x− Sα)
+

1− β
+ V L

α (Sα) ≤ Πα(x) ≤ c(x)+ + p(x)− + V U
α (Smy

α ),

(2.23)

where Sα are arbitrarily chosen non-negative basestock levels that are non-decreasing

in α, and V L
α (Sα) and V

U
α (Smy

α ) are constants that are also non-decreasing in α and

are given by expressions (A.3) and (A.6) in Appendix A.

Inequalities (2.20)-(2.21) state that the higher the initial rating, the higher the

expected discounted profit over an infinite horizon, for the same initial inventory; how-

ever, this does not mean that the optimal inventory level is increasing in the rating.

The upper bounds in (2.22)-(2.23) are constructed by considering the myopic policy

under an ideal scenario in which αt increases by δ+αt
whenever the buyer selects the

supplier, irrespectively of whether the demand is met or not, and remains unchanged,

otherwise. In the proof, we note that the upper bound developed for a similar problem

in Robinson (2016) is obtained by further allowing the supplier to order after observ-

ing the demand. The lower bound is constructed by considering an order-up-to policy

with rating-dependent order-up-to points Sα that are non-decreasing in α. Intuitively,

Sα values satisfying Sα ≥ Smy
α are likely to produce tighter lower bounds, because the

order-up-to point under the optimal policy is greater than that under the myopic pol-

icy, as we show later in Proposition 2.3. We also note that the lower bound developed
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in Robinson (2016) is V L
α (0), where 0 ≤ V L

α (0) ≤ V L
α (Smy

α ), implying (2.19). Fi-

nally, observe that in the newsvendor model, where qα = q, α ∈ A, the myopic policy

is optimal and independent of α, and (2.22) becomes V L(Smy) = V (x) = V U(Smy),

x ≤ Smy, after dropping index α. A quantity that plays an important role in our anal-

ysis is the difference β[Vα+δ+α
(0)− Vα−δ−α

(0)] that represents the supplier’s discounted

future profit loss following a stockout when her rating is α. Although evaluating

this difference is in general computationally intractable, it can be bounded using

expressions (2.20) and (2.22), as follows:

0 ≤ Vα+δ+α
(0)− Vα−δ−α

(0) ≤ ∆α, (2.24)

where

∆α = V U
α+δ+α

(Smy

α+δ+α
)− V L

α−δ−α
(Sα−δ−α

). (2.25)

From our discussion following Proposition 2.2, in the newsvendor model, ∆α = 0.

From the Bellman equation, we can derive the following properties regarding the

structure of the optimal policy, y∗α(x), and Vα(x).

Lemma 2.1. The optimal inventory control policy is to satisfy all backorders, i.e.,

y∗α(x) ≥ (x)+. (2.26)

Lemma 2.1 implies that y∗α(x) ⩾ 0. For this reason, henceforth, we will restrict

our attention to the case where y ⩾ 0. In this case, Lα(y) in (2.12) becomes

Lα(y) = K1y +K2qαB(y). (2.27)

From the above analysis, Hα(y) is continuous and tends to −∞ as y → ∞. More-

over, it is bounded from above and its global maximum is non-negative. In general,

it may have several local maxima, even though the per period profit is concave. This

is a major deviation—and a source of substantial difficulty in the analysis—from the

newsvendor model where the equivalent function preserves the concavity of the per-

period profit. As a result, under the optimal stationary inventory control policy, for
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each rating α, the inventory space is partitioned into regions that are separated by

multiple threshold points, S0
α, s

1
α, S

1
α, . . . , s

i
α, S

i
α, . . . , s

n
α, S

n
α, with the following prop-

erties:

(i) 0 ≤ S0
α < s1α < S1

α < . . . < siα < Si
α < . . . < snα < Sn

α,

(ii) H ′
α(S

i
α) = 0 and H ′′

α(S
i
α) < 0, i = 1, 2, . . . n; if S0

α = 0, then H ′
α(S

0
α) ≤ 0,

(iii) Hα(S
i−1
α ) > Hα(S

i
α) and Hα(s

i
α) = Hα(S

i
α), i = 1, 2, . . . , n.

The optimal policy is to order up to Si
α in region Ri

α = [siα, S
i
α] and not order in

region R̄i
α = [Si

α, s
i+1
α ] , i = 0, . . . , n, where by convention, s0α = −∞ and sn+1

α = ∞.

Note that at siα, i = 1, . . . , n, it is optimal both to order up to Si
α and not order.

Figure 2.1 illustrates the optimal policy for n = 2.

0 ,

Order 

up to 

Do not 

order

( )

( )

1 +

Do not 

order
Order 

up to 

Do not 

order
Order 

up to 

Figure 2.1: Optimal inventory control policy.

In mathematical terms, the optimal policy is given by the following expression:

y∗α(x) =
n∑

i=0

Si
α1{x∈Ri

α} + x1{x∈R̄i
α}. (2.28)

The intuition behind the optimal policy is discussed in Section A in Appendix A

using two examples of demand density functions f(w), which suggest that n depends

on the shape of f(w) and is bounded by the number of its local maxima, which

typically is only one or two at most.
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Lemma 2.2. The derivative of the value function is non-positive, i.e.,

V ′
α(x) ≤ 0, x ∈ R. (2.29)

Proof. In view of (2.28), Vα(x) in (2.14) and its first derivative can be written as

follows:

Vα(x) = K3qαθ +
n∑

i=0

Hα(S
i
α)1{x∈Ri

α} +Hα(x)1{x∈R̄i
α}. (2.30)

V ′
α(x) = H ′

α(x)1{x∈∪n
i=0R̄

i
α} ≤ 0. (2.31)

Clearly, V ′
α(x) = 0, if x ∈ ∪n

i=0R
i
α, as is shown in Figure 2.1.

Expression (2.30) states that Vα(x) is constant and equal to K3qαθ + Hα(S
i
α) in

region Ri
α. In region R̄i

α, Vα(x) drops parallelly to Hα(y), x = y, as is shown in

Figure 2.1. For x < 0, (2.30) and (2.31) imply that Vα(x) = K3qαθ+Hα(S
0
α) = Vα(0)

and V ′
α(x) = 0, respectively. Consequently, the second integral in (2.15) becomes

Vα−δ−α
(0)F̄ (y), and Hα(y) can be simplified. The simplified form of Hα(y) and its

first two derivatives are

Hα(y) = −Lα(y) + β

{
qα[

∫ y

0

Vα+δ+α
(y − w)dF (w) + Vα−δ−α

(0)F̄ (w)] + q̄αVα(y)

}
,

(2.32)

H ′
α(y) = −L′

α(y) + β

{
qα[f(y)(Vα+δ+α

(0)− Vα−δ−α
(0)) +

∫ y

0

V ′
α+δ+α

(y − w)dF (w)]

+ q̄αV
′
α(y)

}
,

(2.33)

H ′′
α(y) = −L′′

α(y) + β
{
qα

[
f ′(y)

(
Vα+δ+α

(0)− Vα−δ−α
(0)
)
+ f(y)V ′

α+δ+α
(0+)

+

∫ y

0

V ′′
α+δ+α

(y − w)dF (w)
]
+ q̄αV

′′
α (y)

}
,

(2.34)

The following proposition provides lower and upper bounds on S0
α and Sn

α, respec-

tively.
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Proposition 2.3. Smy
α ≤ S0

α ≤ Sn
α ≤ S̄n

α, α ∈ A, where Smy
α is given by (2.17) and

S̄n
α is given by

S̄n
α = argmin

y≥(x)+

{
K2F̄ (y) + β∆αf(y) ≤

K1

qα

}
, α ∈ A, (2.35)

where ∆α is given by (2.25).

Proposition 2.3 indicates that the order quantity under the optimal policy is

greater than or equal to that under the myopic policy; hence, using the myopic

policy will lead to profit losses. Proposition 2.3 also provides an upper bound on the

maximum order-up-to level which is useful for designing storage capacity.

2.4 When is a basestock policy optimal?

As we saw in Section 2.3, this is not in general the case in our service-driven demand

model. However, if S0
α is the unique maximizer of Hα(y) each α, the optimal policy

is a basestock policy with rating-dependent basestock levels S0
α, defined as follows:

y∗α(x) = max
(
x, S0

α

)
. (2.36)

The following proposition provides a sufficient condition for the concavity ofHα(y)

which ensures the existence of a unique maximum and the optimality of a basestock

policy.

Proposition 2.4. If f(y) satisfies

f ′(y)

f(y)
≤ K2

β∆α

, y ≥ 0,∀α ∈ A, (2.37)

where ∆α is given by (2.25), then Hα(y) is concave for all α, and therefore the op-

timal stationary inventory control policy is a basestock policy with rating-dependent

basestock levels given by (2.36).

Obviously, if f is non-increasing (e.g., exponential, uniform, Weibull and Gamma

with shape parameter ≤ 1, etc.), then (2.37) immediately holds for every y ≥ 0. Even



32 CHAPTER 2. INVENTORY POLICIES WITH SERVICE-DRIVEN DEMAND

if f(y) is increasing for some y, however, condition (2.37) may still hold if its r.h.s. is

large enough. Intuitively, a large value of K2/β∆α means that the myopic backorder

cost is more important than future profit losses following a stockout, suggesting that

the optimal policy should be similar in structure to the myopic policy, which is a

basestock policy. Note that in the newsvendor model, ∆α = 0; therefore, (2.37) always

holds, verifying that the optimal inventory control policy is a basestock policy, as was

also mentioned earlier. If f(y) is log-concave (e.g., normal, logistic, Weibull, Beta,

Gamma with shape parameter ≥ 1, etc.), then f ′(y)/f(y) decreases in y Bagnoli and

Bergstrom (2005). In this case, (2.37) holds for every y > 0, as long as it holds for

y = 0.

A sufficient condition for the optimality of a basestock policy that does not require

the concavity of Hα(y) is H
′
α(y) ≤ 0, y ≥ S0

α. Evaluating this condition, however, is

practically impossible, because no analytical expression for S0
α exists. An exception is

the case S̄n
α = 0, where all order-up-to points including S0

α collapse onto zero, making

a basestock policy with zero basestock level (equivalent to a make-to-order policy)

optimal for rating α, and all ratings above α transient.

Finally, Proposition 2.5 provides a condition under which the optimal policy ef-

fectively is a basestock policy with rating-dependent basestock levels S0
α.

Proposition 2.5. The optimal stationary inventory control policy effectively is a

basestock policy with rating-dependent basestock levels S0
α, if

x0 ≤ min
α′≥α0

(
s1α′

)
and S0

α ≤ min
α′≥α

(
s1α′

)
,∀α ∈ A, (2.38)

where x0 and α0 are the initial inventory level and rating, respectively.

The proof is straightforward and is based on showing that (2.38) ensures that

xt ≤ s1αt
, t ≥ 0, implying that xt always belongs in regions R0

αt
and R̄0

αt
, where

y∗αt
= max

(
xt, S

0
αt

)
from (2.28). Two special cases where (2.38) holds are when the

global maximizers S0
α (respectively, the reorder points s1α) are non-decreasing in α.

These cases are given by Corollary 2.1.
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Corollary 2.1. The optimal stationary inventory control policy effectively is a base-

stock policy with rating-dependent basestock levels S0
α, if either

x0 ≤ S0
α0

and S0
α ≤ S0

α+δ+α
, ∀α ∈ A, or (2.39)

x0 ≤ s1α0
and s1α ≤ s1

α+δ+α
, ∀α ∈ A, (2.40)

where x0 and α0 are the initial inventory level and rating, respectively.

Using the Bellman equation and the first-order conditions, we can derive condi-

tions under which S0
α is non-decreasing in α for all α, but these conditions are hard

to verify as they involve the simultaneous solution of many non-linear equations and

are too complicated to provide any useful insights. In fact, in some cases, it is easier

to show that S0
α is decreasing in α for some α. For example, it can be argued that for

M > 2, if qM = qM−1 > qM−2, then S
0
M−1 > S0

M . Intuitively, this happens because

in both ratings M − 1 and M , the demand distribution seen by the supplier is the

same, making the myopic profits equal. Rating M − 1, however, is “riskier” than M ,

because it borders a lower rating, M − 2. To hedge against this risk, the supplier

needs to hold more inventory; hence, S0
M−1 > S0

M . An exception is the case of the

first two ratings, where it can be shown that S0
2 ≥ S0

1 always. ForM = 2, this further

implies that (2.39) holds, and therefore, the optimal policy effectively is a basestock

policy. This is stated in Proposition 2.6, where we also provide expressions that lead

to the computation of S0
1 and S0

2 .

Proposition 2.6. S0
1 and S0

2 satisfy

(i) S0
2 ≥ S0

1 for M ≥ 2.

(ii) If M = 2, then, for any initial rating α = 1, 2 and inventory level x ≤ S0
α, the

optimal stationary inventory control policy effectively is a basestock policy with

rating-dependent basestock levels S0
1 and S0

2 satisfying the first-order conditions,

K1 −K2qαF̄ (S
0
α)

βqαf(S0
α)

=
K3(q2 − q1)θ −K1(S

0
2 − S0

1)−K2[q2B(S0
2)− q1B(S0

1)]

1− β + β[q2F̄ (S0
2) + q1F (S0

1)]
(2.41)

for α = 1, 2.
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In the proof, we also provide conditions for the two special cases where S0
1 or both

S0
1 and S0

2 are zero and do not satisfy first-order conditions. Note that the r.h.s. of

(2.41) is independent of α. Hence, the l.h.s. is the same for both α = 1, 2, i.e.,

[
K1 −K2q1F̄ (S

0
1)
]
q2f(S

0
2) =

[
K1 −K2q2F̄ (S

0
2)
]
q1f(S

0
1). (2.42)

From (2.41) and (2.42), we can derive closed-form expressions for S0
1 and S0

2 for

different demand distributions. For example, if wt is exponentially distributed with

mean θ, equation (2.42) yields S0
2 − S0

1 = θ ln(q2/q1), implying that S0
2 − S0

1 de-

pends only on the average demand and the relative selection probabilities. Sub-

stituting S0
1 from this expression into (2.41) and solving (2.42) for α = 1, yields

S0
1 = θ ln {max [q1(K2 + [K3(q2 − q1) −K1 ln(q2/q1)])/(1− βq̄1)K1, 1]}. Similarly, if

wt is uniformly distributed in [0, 2θ], equation (2.42) yields S0
2−S0

1 = 2θ(K1/K2)(q2−
q1)/q1q2, implying that S0

2−S0
1 depends on all problem parameters. More specifically,

from (2.6) and (2.7), it is decreasing in r and b and increasing in c and h. Substitut-

ing S0
2 from the above expression into (2.41), and solving (2.41) for α = 1, yields a

complicated expression for S0
1 , which we omit for space considerations.

2.5 The case of constant buyer demand

In this section, we consider the case where the buyer demand is a constant θ > 0.

In this case, the demand seen by the supplier is still random (Bernoulli) and given

by (2.1), where wt = θ, ∀t. For notational and computational simplicity, we consider

the average instead of the discounted profit criterion. Specifically, the problem of the

supplier is to select order-up-to levels yt ≥ xt,∀t, to maximize her average expected

profit over an infinite horizon, denoted by Π̃, defined as

Π̃ = lim
T→∞

1

T
max
yt≥xt

{
T∑
t=0

Λαt(yt)

}
, (2.43)

where Λαt(yt) is the expected profit in period t and is given from (2.11)-(2.12), after

substituting K1, K2, and K3 from (2.6)-(2.8) for β = 1, as follows:
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Λαt(yt) = (p+ h)qαtθ − hyt − (h+ b)
[
qαtB(yt) + q̄αt(yt)

−] . (2.44)

For this problem, we have the following results.

Lemma 2.3. If the buyer demand is a constant θ, then the optimal stationary inven-

tory control policy, y∗α(x) is a basestock policy with rating-dependent basestock levels

S0
α satisfying

(i) S0
α ≤ θ, α ∈ A.

(ii) If S0
α < θ for some α, then all ratings α′, α′ > α, are not accessible from α.

(iii) If S0
α = θ for some α, then all ratings α′, α′ < α, are not accessible from α.

The proof is straightforward and is omitted. Lemma 2.3 implies that the optimal

policy must be searched among the following candidate basestock policies which differ

in the values of S0
α: (i) Policy P1 : 0 ≤ S0

α < θ, α ∈ A. Under P1, the supplier’s rating

will eventually be absorbed in the lowest value 1, because she will never immediately

satisfy the demand. (ii) Policy PM : S0
α = θ, α ∈ A. Under PM , the supplier’s

rating will eventually be absorbed in the highest value M , because she will always

immediately satisfy the demand. (iii) Policy Pα−1,α, α ∈ {2, . . . ,M} : S0
α′ = θ, α′ ≤

α − 1 and 0 ≤ S0
α′ < θ, α′ ≥ α. Under Pα−1,α, the supplier’s rating will eventually

be absorbed in the set {α − 1, α}, because she will always immediately satisfy the

demand, when her rating is at or below α − 1, and never immediately satisfy the

demand when her rating is at or above α. Theorem 2.1 provides the conditions under

which each of the candidate policies is optimal and the resulting maximum average

expected profit.

Theorem 2.1. If the buyer demand is a constant θ, the optimal basestock levels S0
α

and the resulting maximum average expected profit Π̃ are given by the following table,

where Q1 =
h

b+ h
,Q3 =

(p− b)qM−1 +
√

[(p− b)qM−1]2 + 4(p+ h)hqM−1

2(p+ h)
,

Q2 =
h

p+ h
+
p− b

p+ h
q1, Q4 =

(p− b)q1qM−1

(p− b)(qM−1 − q1) + (p+ h)qM−1 − h
:
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Optimal policy S0
α Π̃ Condition

PM θ [(p+ h)qM − h]θ qM > max[Q2,min(Q1, Q3)]
P1 0 (p− b)q1θ qM < min(Q2, Q4)

PM−1,M θ1{α̸=M}
[(2p− b+ h)qM−1 − h]qMθ

qM−1 + qM
Q4 < qM < min(Q1, Q3)

Theorem 2.1 states that the only policy that can be optimal, besides P1 and

PM , is PM−1,M . The conditions under which each policy is optimal have the form of

inequalities involving the selection probabilities of the extreme ratings, q1, qM−1, and

qM , and are independent of q2, . . . , qM−2. These conditions partition the q1–qM−1–qM

space into regions where only one policy is optimal. On the boundaries separating

two regions, the policies that are optimal on either side of the boundary yield the

same expected profit, hence they are both optimal.

Figure 2.2 shows three representative graphs in the q1–qM space, displaying the

regions where the three policies are optimal, for p = 4.8, h = 3, b = 1, and three

different values of qM−1, respectively. The regions where PM , PM−1,M , and P1 are

optimal are filled in dark gray, light gray, and white, respectively. Note that not all

parts of these regions are feasible. The feasible parts are in the top left quadrant of

each graph where q1 ≤ qM−1 ≤ qM . The other three quadrants are non-feasible and

are shaded with stripes.
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Figure 2.2: Optimal inventory control policy for p = 4.8, h = 3, b = 1 and different
values of qM−1.

From Theorem 2.1, it follows that if qM > h/(b + h), policy PM outperforms the
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other two policies, irrespectively of the supplier’s profit margin p and the buyer’s re-

action to stockouts expressed by the other selection probabilities (see also the proof).

This condition holds if h/b is relatively small and/or qM is relatively large. In both

cases, the expected inventory holding cost is limited. Graph (a) in Figure 2.2 rep-

resents a case where qM−1 > h/(b + h) and therefore qM > h/(b + h). In this case,

PM outperforms the other two policies for all feasible values of q1 and qM ; therefore,

region PM entirely covers the feasible quadrant.

Graph (b) shows a case where h/(2p + h − b) < qM−1 < h/(b + h). In this

case, the feasible quadrant contains all three regions. If qM is smaller than h/(b+ h)

but relatively larger than qM−1, the supplier would incur a significant profit loss if

she allowed her rating to drop below M ; therefore, the overall optimal policy is PM ,

irrespectively of q1. If qM and qM−1 are close to each other but significantly larger than

q1, PM−1,M is overall optimal, because it keeps a better balance between inventory

and backlog costs than PM does, without sacrificing revenues too much, since qM−1

is close to qM . Finally, if qM , qM−1, and q1 are close to each other and are not too

high, P1 is overall optimal, because it eliminates inventory holding costs, which can

be quite high, given that the selection probabilities are not too high.

Graph (c) shows a case where qM−1 < h/(2p + h − b). In this case, the feasible

quadrant is covered by regions PM and P1 only. PM−1,M is never optimal, because

qM−1 is too small and close to q1 and is overtaken by P1 when qM is also small, as

was explained earlier. If qM is large, on the other hand, PM is overall optimal.

Finally, it is straightforward to show that in the case of two ratings (M = 2),

Theorem 2.1 reduces to Corollary 2.2.

Corollary 2.2. If M = 2 and the buyer demand is a constant θ, the optimal bases-

tock levels S0
α and the resulting maximum average expected profit Π̃ are given by the

following table:

Optimal policy S0
α Π̃ Condition

P2 θ [(p+ h) q2 − h] θ q2 > Q2

P1 0 (p− b) q1θ q2 < Q2
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Corollary 2.2 states that when M = 2, the option of alternating between ratings

1 and 2, i.e., policy P1,2, is never optimal. Indeed, under such a policy, the supplier

would order up to θ when α = 1 and order up to zero when α = 2, which would

imply that S0
2 < S0

1 . However, as we have shown in Proposition 2.6 for the general

case where the buyer demand is stochastic when M = 2, S0
2 ≥ S0

1 .

2.6 Imputing the fixed stockout cost newsvendor

model

As was mentioned earlier, Çetinkaya and Parlar (1998) studied an extension of the

newsvendor model with a fixed stockout cost in addition to the proportional backorder

cost. One of the interpretations of the fixed cost is that it is a penalty for the buyer’s

loss of goodwill and hence future demand, due to a stockout. How to estimate this

cost, however, remains questionable. To address it, we consider a similar model, which

we refer to as FS, and impute the fixed stockout cost in this model by relating it to

the service-driven demand (SD) model developed in Section 2.2. In the FS model, we

assume that the demand seen by the supplier in each period t is given by:

dt =

{
wt, w.p. q,

0, w.p. q̄.
(2.45)

where wt is the buyer demand and q is the probability that the buyer selects the

supplier; wt has the same distribution as in the SD model, but unlike in that model, q

is constant and independent of past service. The per period profit is identical to that

in the SD model, with the addition of a fixed penalty cost per stockout incident b̂, and

is given by r[(xt)
− +min(yt, dt)]− c(yt − xt)− h(yt − dt)

+ − b(dt − yt)
+ − b̂1{dt>(yt)+}.

Çetinkaya and Parlar (1998) consider the same expression for the per period profit

without the term r(xt)
−. Moreover, the fixed stockout cost term in their model is

b̂1{dt>yt} instead of b̂1{dt>(yt)+}, because they assume that the buyer always selects the

supplier, hence, P (dt = 0) = 0. Similarly to the SD model, the redefined profit in the
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FS model is K3dt −K1yt −K2(dt − yt)
+ − b̂1{dt>(yt)+}. Its expected value, Λ(yt), is:

Λ(yt) = K3qθ − L(yt), (2.46)

where L(yt) denotes the expected cost of the supplier in period t, and is given by:

L(yt) = K1yt +K2

[
qB(yt) + q̄(yt)

−]+ b̂qF̄ (yt). (2.47)

Expression (2.47) is the same as (2.12) with the addition of the last term and

without the dependence on the rating. Proposition 2.7 gives the optimal single-period

(myopic) policy for the FS model.

Proposition 2.7. If f(y) satisfies:

f ′(y)

f(y)
≤ K2

b̂
, (2.48)

then Λ(y), y ≥ 0, is concave, and therefore the myopic inventory control policy in the

FS model is a basestock policy with basestock level:

Smy = argmin
y≥0

{
K1 −K2qF̄ (y)− b̂qf(y) ≥ 0

}
. (2.49)

Expressions (2.48) and (2.49) are similar to expressions (20) and (21) in Çetinkaya

and Parlar (1998), except that there, q = 1 and K2 equals r + b + h instead of

(1− β)r + b+ h, because of the omission of the term r(xt)
− in the per period profit,

as was mentioned earlier. Condition (2.48) is also similar to condition (2.37) in

Proposition 2.4, except that the latter contains β∆α in place of b̂. This implies that b̂

can be interpreted as the supplier’s maximum discounted future profit loss following

a stockout. Assuming (2.48) holds, it follows from (2.49) that if b̂f(0) > K1/q −K2,

then Smy is the unique positive solution of K1 − K2qF̄ (y) − b̂qf(y) = 0; otherwise,

Smy = 0. Note that if f(y) is non-increasing, (2.48) immediately holds, and Smy is the

unique solution of (2.49). For example, if wt is exponentially distributed with mean

θ, (2.49) yields Smy = θ ln{max[q(K2 + b̂/θ)/K1, 1]}. Similarly, if wt is uniformly

distributed in [0, 2θ], (2.49) yields Smy = [b̂+ (K2 −K1/q)2θ]
+/K2.
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Note that under condition (2.48), the myopic policy in Proposition 2.7 is optimal

also for the infinite-horizon problem. For the discounted expected profit criterion,

this has been shown in Çetinkaya and Parlar (1998). For the average expected profit

criterion, it can be shown, e.g., by using the vanishing discount method Beyer, Chang,

Sethi and Taksar (2010). In the latter case, the optimal basestock level is given by

(2.49) for β = 1. For computational and notational simplicity, here, we consider the

infinite-horizon expected average profit criterion. In the FS model, b̂ is supposed to

reflect the cost from the loss in future demand due to the loss of goodwill following a

stockout; yet, the demand is assumed to be stationary and independent of past service.

Moreover, there are no guidelines on how to select b̂. Choosing b̂ in an arbitrary way

may lead to potentially significant profit losses. To address this issue, we propose to

estimate b̂ by linking the FS model to the SD model which explicitly incorporates the

buyer’s response to service into the demand dynamics. Because in the FS model the

supplier uses a basestock policy with basestock level Smy given by (2.49) (assuming

(2.48) holds), we presume that the linked SD model is also operated under a basestock

policy with a common basestock level S for all ratings. We refer to this model as the

FS-equivalent SD model. To estimate b̂ in the FS model, we compute the optimal

basestock level S∗ and the corresponding average selection probability q̃(S∗) in the

FS-equivalent SD model. Then, we set Smy = S∗ and q = q̃(S∗) in the FS model and

solve (2.49) for b̂.

Proposition 2.8. The optimal basestock level S∗ in the FS-equivalent SD model and

the imputed fixed stockout cost b̂∗ in the FS model are given by

S∗ = argmax
S≥0

{
Π̃ (S)

}
, (2.50)

b̂∗ =



1

f(S∗)

(
K1

q̃(S∗)
−K2F̄ (S

∗)

)
, S∗ > 0,

b̂ ∈
[
0,

1

f(0)

(
K1

q1
−K2

)]
, S∗ = 0,

(2.51)
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where

Π̃ (S) = q̃ (S) [K3θ −K2B (S)]−K1S, (2.52)

q̃(S) =
1− Φ (S)M

1− Φ (S)

[∑
α∈A

Φ (S)α−1

qα

]−1

, (2.53)

with Φ (S) = F (S)/F̄ (S) and K1 = h,K2 = h+ b,K3 = h+ p, since β = 1.

Proposition 2.8 gives expressions for S∗ and the imputed fixed stockout cost b̂∗,

along with expressions for the average expected profit Π̃(S) and average selection

probability q̃(S) in the FS-equivalent SD model. As was mentioned above, expression

(2.51) is derived by solving (2.49) for b̂, using Smy = S∗ and q = q̃(S∗). If we reverse

the problem and use b̂ = b̂∗ from (2.51) and q = q̃(S∗) from (2.53) to compute Smy

from (2.49), the solution may not be unique. Certainly, one solution is S∗, but there

may be other solutions too. A sufficient condition for S∗ to be the unique solution is

that b̂∗ satisfies (2.48).

In the method described above, the supplier in the FS-equivalent SD model is

restricted to operate under a basestock policy with a common basestock level for all

ratings, to match the operation of the newsvendor in the FS model. This policy,

besides being useful for estimating b̂∗, is of interest in itself, because of its simplicity

and ease of implementation. An obvious question is, how well does it perform com-

pared to the optimal policy, which can be found by solving for the maximum average

expected profit over an infinite horizon Π̃ given by (2.43), where Λ(yt) is given by

(2.11) for β = 1. If its optimality gap is small, this would make it attractive for

practical purposes. Moreover, it would justify the adoption of the simpler FS model,

provided that the supplier uses the imputed fixed cost b̂∗. In this case, a natural

follow-up question is, how sensitive is the average expected profit to errors in b̂∗. We

address this questions in Section 2.7.3
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2.7 Numerical results

In this section, we present numerical results on the bounds of the optimal policy

developed in Section 2.3, on the verification of the optimal policy structure and the

effect of problem parameters on the optimal policy, and on the performance of the

FS-equivalent SD model developed in Section 2.6.

2.7.1 Evaluation of bounds on optimal policy

To numerically evaluate the bounds that we derived in Proposition 2.2 and compare

them against the bounds in Robinson (2016), we tested 400 instances of a problem

with M = 5. The parameters for each instance were generated randomly within the

following ranges: c ∈ [1, 5], h, b ∈ [0, 1], β ∈ [0.85, 0.95], p = b/β +∆p,∆p ∈ [1, 5]; r

was computed as p + c. The selection probabilities qα, α ∈ A, were generated as the

order statistics ofM random variates uniformly distributed in the interval [0.15, 0.95].

The buyer demand distribution was a mixture of two normal distributions with means

2.5 and 5.0, variances equal to the means, and weights ξ2.5 and ξ5.0 = 1 − ξ2.5,

respectively, where ξ2.5 was randomly generated in the interval [0.77, 0.87], i.e., f(w)

was bimodal with mean θ = ξ2.52.5 + ξ5.05.0.

For each instance, we computed Vα(0) by numerically solving the dynamic pro-

gramming equation (2.14) using state-space discretization and value iteration. To

implement our numerical scheme, we approximated the two normal distributions with

two Poisson distributions with means 25 and 50, respectively, we discretized the in-

ventory space using step size 1, truncated it in the interval [−90, 80], and scaled it by

a factor of 0.1. We also computed the upper and lower bounds in Robinson (2016), as

well as the bounds in (2.22), for x = 0. For the lower bounds, V L
α (Sα), we used Sα = 0

(Robinson’s lower bound) and Sα = Smy
α . Our numerical experiments showed that

when the myopic policy was used, the drop in profit was significant, ranging on average

from 27.66% to 40.76%, depending on the initial rating. As was shown in Proposition

2.3, S0
α ≥ Smy

α , suggesting that order-up-to points that are larger than Smy
α are likely

to produce tighter bounds. With this in mind, we also tested Sα > Smy
α , for several

order-up-to points Sα, such that Sα′ ≥ Sα, α
′ > α. After some experimentation, we
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observed that Sα values that are computed by the following heuristic formula yield

reasonably tight bounds:

Sheur
α = Smy

M

(
1 +

qα+δ+α
− q1

qα+δ+α

)
= Smy

M

(
2− q1

qα+δ+α

)
. (2.54)

According to (2.54), Sheur
α equals Smy

M plus a term which is proportional to the per-

cent increase of the selection probability after a good service w.r.t. to the selection

probability in the lowest rating.

To compare the five bounds of Vα(0) discussed above, we computed the percent

difference 100 × (X − Vα(0))/X for each bound X. For notational simplicity, we

denote these differences by LBR for X = V L
α (0) (lower bound in Robinson (2016)),

LBM for X = V L
α (Smy

α ), LBH for X = V L
α (Sheur

α ), UB for X = V U
α (Smy

α ), and UBR

for X = upper bound in Robinson (2016). Figure 2.3 shows plots of LBR, LBM,

LBH, UB, and UBR, for α = 2 and 4, for the first 200 instances. In each plot, the

instances are sorted in ascending order of the LBR values, for ease of exposition.

LBR LBM LBH UB UBR

-100
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200
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Figure 2.3: LBR, LBM, LBH, UB, and UBR, for 200 instances.

The plots demonstrate the superiority—in terms of tightness—of UB over UBR

and of LBM over LBR and show that LBH is a much tighter lower bound than LBM

and LBR in almost all instances. Only in a few instances where the optimal policy

is to order up to zero for some α, LBH is lower than LBM and even LBR, because

LBH is constructed by considering a policy where the supplier stocks a multiple of

Smy
M , which is positive when Smy

M > 0.
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We also computed the mean values of LBR, LBM, LBH, UB, and UBR over all 400

instances. These values show that on average, LBH, UB, and UBR drop significantly

with α, because they are constructed by considering policies that drive αt towards

higher values. Indicatively, the mean LBH value drops from −4.28 for α = 5 to −9.66,

for α = 1. LBR and LBM, on the other hand, are U-shaped in α. The mean LBM

value is 3.91% higher than the mean LBR value, for α = 1, but this difference rises

to 22.38% for α = 5.

2.7.2 Verification of optimal policy structure and effect of

problem parameters on optimal policy

To verify the structure of the optimal policy, we numerically solved the dynamic

programming equation (2.14) using state-space discretization and value iteration,

for several problem instances. In each instance, we varied h, b, r, and the selection

probabilities qα, for which we considered the four different profiles shown in Figure

2.4, representing different buyer responses to stockouts.

0
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0.4

0.6

0.8

1

1 2 3 4 5

Concave
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Figure 2.4: Four different profiles of qα vs. α for M = 5.

In all instances, M = 5, β = 0.9, c = 1, and the buyer demand distribution is

a mixture of two normal distributions with means 1.0 and 5.0, variances equal to

the means, and weights ξ1.0 = 0.7 and ξ5.0 = 0.3, respectively, i.e., f(w) is bimodal

with mean θ = (0.7)(1.0) + (0.3)(5.0) = 2.2. To implement our numerical scheme,

we approximated the two normal distributions with two Poisson distributions with
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means 10 and 50, respectively, we discretized the inventory space using step size 1,

truncated it in the interval [−90, 80], and scaled it by a factor of 0.1.

Figure 2.5 shows graphs of Vα(x) vs. x, x ≥ 0 for all α, for a representative instance

where h = 0.5, b = 0.4, and r = 3.6. These graphs verify that the value function for

each rating has the shape shown in Figure 2.1, leading to the partitioning of the

inventory space in order-up-to and do-not-order regions, drawn with black and gray

color, respectively. For the intensely convex qα profile, rating 4 has two order-up-to

regions, and all other ratings have one such region; for rating 1, this region is (−∞, 0],

so S0
1 = 0. For the convex, linear, and concave qα profiles, ratings 1 and 5 have one

order-up-to region, and ratings 2, 3, and 4 have two such regions. This verifies our

intuition following equation (2.28) that the number of order-up-to regions is bounded

by the number of local maxima of f(w), which, for the instances tested, is 2. The
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Figure 2.5: Vα(x) vs. x, x ≥ 0, and optimal order-up-to and do-not-order regions for
h = 0.5, b = 0.4, r = 3.6, β = 0.9, and θ = 2.2, for the four qα profiles in Figure 2.4.

graphs also show that although Vα(x) varies significantly with α, it is quite flat in

the region between the first and last order-up-to points. This suggests that basestock

policies with rating-dependent basestock levels may perform quite well. In fact, the

policy used to construct V L
α (Sα) with Sα = Sheur

α , where Sheur
α is given by (2.54), gives
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reasonably tight bounds, as was discussed in Section 2.7.1. Also, our numerical results

in Section 2.7.3 indicate that using a basestock policy with a common basestock level

for all ratings can be quite efficient.

To explore the effect of problem parameters on the optimal policy, we numerically

solved the dynamic programming equation (2.14) using state-space discretization and

value iteration, for a large number of problem instances, with β = 0.9 and c = 1,

where we varied h, b, r, M , qα, and the buyer demand distribution. We run two

sets of experiments. In the first set, we considered the values h ∈ {0.2, 0.3, 0.4, 0.5},
b ∈ {0.7, 0.8, 0.9}, r ∈ {3.3, 3.4, 3.5}, M = 5, and the four profiles of qα in Figure

2.4.In the second set, we considered the same values for h, b, and r as in the first set,

and in addition the values M ∈ {2, 3, 5, 7}, for a linear qα profile ranging between

q1 = 0.2 and qM = 0.9. In both sets of experiments, we considered exponential and

normal buyer demand distributions with mean θ = 5.0 and, in the case of the normal

distribution, variance equal to the mean. Note that the coefficient of variation of

the exponential distribution is 1, whereas that of the normal distribution is 1/
√
θ =

1/
√
5 = 0.447. To implement our numerical scheme, we approximated the exponential

and normal distributions with geometric and Poisson distributions, respectively, with

mean 50, we discretized the inventory space using step size 1, truncated it in the

interval [−550, 200] for the geometric case, and [−90, 80] for the Poisson case, and

scaled it by a factor of 0.1. In all instances, the optimal policy is basestock with

rating-dependent basestock levels S0
α. Figure 2.6 shows indicative plots of S0

α vs.

α for b = 0.8, r = 3.4, M = 5, and all the h values, qα profiles, and demand

distributions tested, for the first set of experiments. The plots show that for the

intensely convex qα profile, S0
α is increasing and concave in α; the concavity breaks

only in two instances where S0
1 = 0, for the exponential distribution. For the other

three qα profiles, S0
α has a skewed inverted U shape as a function of α. As we move

from the intensely convex to the concave qα profile, S0
α increases for lower values of

α and decreases for higher values, and the skewness of S0
α shifts from higher to lower

values of α, reflecting the corresponding shift in the elasticity of qα. Note however

that in all instances S0
1 ≤ S0

2 , verifying Proposition 2.6 (i). These results suggest

that the supplier tends to maintain higher inventory in intermediate ratings, where
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Figure 2.6: S0
α vs. α for b = 0.8, r = 3.4, red M = 5, four values of h, two demand

distributions, and the four qα profiles in Figure 2.4.

she has to gain if she meets the demand and lose if she does not, than in the lowest

and highest ratings, where she has nothing to lose and nothing to gain, respectively.

Even under the convex qα profile, where qα is increasingly more elastic in α, S0
α has

an inverted U shape instead of being increasing in α. If the buyer’s intention is to

create a supplier rating system to improve service, then the probability with which he

selects the supplier must be sharply increasing in α, as is the case with the intensely

convex qα profile.

The plots also show that the optimal basestock level for the lowest rating is sig-

nificantly lower for the exponential distribution than it is for the normal distribution

and that this ordering is sharply reversed for larger ratings. This is due to the fact

that the two distributions differ both in shape and variability. In the lowest rating,

under the exponential distribution, the supplier has a good chance of meeting the

demand and increasing her rating even if her basestock level is lower than the mean

demand; under the normal distribution, her basestock level must be closer to the
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mean demand to match this chance. On the other hand, for higher ratings, her risk

of stocking out and being downgraded is higher under the exponential distribution,

than it is under the normal distribution because the former distribution has higher

variability. This results in significantly higher optimal basestock levels for the expo-

nential distribution. In fact, the span of S0
α values for the exponential distribution

is an order of magnitude larger than that for the normal distribution. These results

suggest that the shape and, most importantly, the variability of the buyer’s demand

dramatically amplifies the effect of the problem parameters on the optimal basestock

levels of the supplier.

As expected, in all instances, S0
α is decreasing in h. Similar results were observed

when we independently varied b and r, except that S0
α is increasing in both b and r,

although its sensitivity to b is quite low.

Figure 2.7 shows indicative plots of S0
α vs. qα for b = 0.8, r = 3.4, a linear qα

profile, two h values, and all the M values and demand distributions tested, for the

second set of experiments.
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Figure 2.7: S0
α vs. qα for b = 0.8, r = 3.4, the linear qα profile, two values of h, four

values of M , and two demand distributions.

The plots show that S0
α has the same skewed inverted U shape that we saw in the

first set of experiments, for all values of M , except M = 2, where S0
2 > S0

1 . They

also reconfirm that the variability of the buyer’s demand dramatically amplifies the

effect of the problem parameters on the optimal basestock levels of the supplier. More

importantly, the plots reveal that the higher the value of M , the lower the supplier’s
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S0
α profile. This is because when M is large, the buyer reacts less erratically to bad

and good service, i.e., with smaller swings in qα, allowing the supplier to reduce her

basestock levels. Therefore, from the buyer’s perspective, a more erratic response

induces better service.

2.7.3 Performance evaluation of FS-equivalent SD model

To numerically assess the performance of the FS-equivalent SD model and the sen-

sitivity of the average expected profit to errors in b̂∗, we tested 60 instances for a

problem with M = 5. In each instance, β = 1 and the revenue and cost parameters

were generated randomly as in the numerical study in Section 2.7.1. In all instances,

the buyer demand distribution was exponential with mean θ = 3, hence condition

(2.48) immediately holds. All instances were repeated for six different profiles of

qα vs. α, shown in Figure 2.8, representing different buyer responses to stockouts,

raising the total number of instances tested to 360 (= 60 × 6). Note that profile 0

corresponds to the newsvendor model, where qα = q, α ∈ A, and hence the demand

is independent of the rating. For each instance, we computed S∗, Π̃(S∗), and q̃(S∗)

from (2.50), (2.52), and (2.53), respectively, in the FS-equivalent SD model, and the

imputed fixed cost b̂∗ in the FS model from (2.51).
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Figure 2.8: Six different profiles of qα vs. α for M = 5.

Figure 2.9 shows plots of S∗, q̃(S∗), Π̃(S∗), and b̂∗, for the 60 instances and six

buyer response profiles tested. The instances in each plot are sorted in ascending

order of the plotted values corresponding to the linear profile (profile 3), for ease of

exposition. Not surprisingly, the rating-dependent buyer response profiles that yield
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the highest Π̃(S∗) values are those with the highest qα values in high ratings (profiles 5,

4, 3, 2, and 1, in decreasing order). These same profiles result in the highest q̃(S∗) and

smallest S∗ values. As a result, they yield the smallest imputed fixed cost b̂∗. For all

these profiles, q̃(S∗) seems to converge to a value in the interval [0.81, 0.86]. In almost

all instances, profile 0 yields the lowest Π̃(S∗) value, because its constant selection

probability is relatively low in high ratings. The few instances where profile 0 results

in a higher Π̃(S∗) value than other profiles do, are characterized by high h/p values.

When h/p is high, it is optimal not to hold inventory, driving the supplier’s rating

downwards. In low ratings, profile 0 has the advantage of a higher selection probability

compared to other profiles. Note that for profile 0, S∗ = 0 in more than one-third of

the instances. In these instances, from (2.50), b̂∗ ∈ [0, (K1/q1 −K2)/f(0)]. In Figure

2.9, we plotted the upper bound of this interval.
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Figure 2.9: Π̃(S∗), S∗, q̃(S∗), and b̂∗, for the six qα profiles in Figure 2.6.

To assess the performance of the FS-equivalent SD policy, we compared Π̃(S∗)

against the maximum expected average profit under the optimal policy in the SD

model, Π̃, which was computed by numerically solving the corresponding dynamic

programming equation. To examine the sensitivity of the average expected profit to
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errors in b̂∗, we computed the optimal basestock level in the FS model for values of

b̂ ̸= b̂∗ from (2.49), denoted by Smy(b̂), after substituting q = q̃(Smy(b̂)) from (2.53).

Then, we substituted Smy(b̂) in (2.52) to compute the resulting average expected

profit in the FS-equivalent SD model, Π̃(Smy(b̂)). The resulting percent loss in the

average expected profit is denoted by ∆Π̃(b̂), i.e., ∆Π̃(b̂) = 100× [Π̃− Π̃(Smy(b̂))]/Π̃.

Figure 2.10 (left) shows ∆Π̃(b̂), for b̂ = mb̂∗, for different multiplication factors m

between 0 and 4, for profile 3, for the 60 instances. Figure 2.10 (right) shows ∆Π̃(b̂∗)

for all profiles. The instances in both plots are sorted in ascending order of ∆Π̃(b̂∗)

for the linear profile (profile 3), for ease of exposition.
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Figure 2.10: Left: ∆Π̃(b̂), for b̂ = mb̂∗,m = 0, 0.5, 1, 2, 4, for qα profile 3 in Figure
2.10. Right: ∆Π̃(b̂∗), for qα profiles 1–5 in Figure 2.10.

From Figure 2.10 (left), we see that the smallest loss (less than 2% on average) is

obtained when the supplier uses the imputed fixed cost, i.e., b̂ = b̂∗. If b̂ = 2b̂∗, the

percent loss is on average approximately 7%, indicating that the average expected

profit is not sensitive to overestimations of the fixed cost. If b̂ = 0.5b̂∗, however,

the percent loss rises to approximately 34% on average, because in one-third of the

instances, the supplier ends up operating under a make-to-order policy, when such

a policy may be far from optimal. Similar results hold for the other buyer response

profiles. Figure 2.10 (right) indicates that the profiles that yielded the highest Π̃(S∗)

values (see Figure 2.9) more or less have the highest ∆Π̃(b̂∗) values.
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2.8 Discussion and future research

In this chapter, we developed a multiperiod model of a supplier selling items to a

buyer who rates the supplier based on the history of her service, measured in terms

of in-stock/out-of-stock incidents. There are several possible directions for future

work. Our results were derived for continuous buyer demand (except for the case

of deterministic demand), but most of them can potentially be extended to discrete

demand.

We assume that M and qα, α ∈ A, are known. In a real application, these param-

eters must be estimated from longitudinal data. If the buyer’s rating of the supplier

is real and observable by the supplier, then M is known, and qα can be estimated

as the number of periods that the buyer selects the supplier when her rating is α

over the number of periods that the supplier’s rating is α. If the rating is an imag-

inary construct for capturing the buyer’s goodwill, then the only information that

the supplier observes in each period is whether the buyer selects her or not and if he

does, whether she meets the demand or not. In this case, the problem of choosing

the appropriate M is a model order determination problem, for which there exist es-

tablished statistical (e.g., likelihood, Bayesian), information-theoretic (e.g., AIC and

BIC), and machine learning (e.g., cross-validation) solution methods Singer, Helic,

Taraghi and Strohmaier (2014).

We assume a single buyer with multiple satisfaction levels reflected by the ratings.

A more general model can include multiple non-homogeneous buyers with different

demand distributions and selection probabilities, expressing diversity in buyer needs

and responses to service. In such a setting, the supplier must decide not only how

much to order but how to ration inventory in case of excess demand. Judging from

the work of Adelman and Mersereau (2013), who addressed the rationing but not

the ordering issue in a similar setting where goodwill is modeled as an exponential

smoothing of utilities derived from past fill rates, this is a very challenging problem.



Chapter 3

Dynamic Supplier Competition

and Cooperation for Buyer Loyalty

on Service

3.1 Introduction

In this chapter, we focus on the switching behavior of a buyer from one supplier

to another following poor service and its implication on the suppliers’ competitive

inventory policy, in a B2B setting. In Section 3.2, we formulate the model of the buyer

and the two suppliers. In Section 3.3, we discuss the myopic policy of the suppliers

and characterize their long-run optimal policy. In Section 3.4, we derive properties

of their best response functions under competition and discuss their equilibria. In

Section 3.5, we derive properties of the optimal joint inventory policy of the suppliers

when they cooperate, and we estimate the backorder penalty rate that the buyer must

charge the suppliers to recover the fill rate that she enjoys under competition. In

Section 3.6, we apply the results to the case where the buyer demand is exponentially

distributed, and we illustrate the results with a numerical example to investigate the

effect of the suppliers’ parameters on the optimal outcome. Finally, in Section 3.7, we

discuss the extension of our model to multiple suppliers. We summarize our findings

in Section 3.8 where we propose directions for future work. Supplemental material

53
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for this chapter, including proofs, can be found in Appendix B.

3.2 Model formulation

Two suppliers sell the same product to a buyer in consecutive periods. The buyer

arranges the suppliers in a rank order list based on the last service she received, which

is either satisfactory or unsatisfactory, depending on whether her demand was fully

met or not. Throughout this paper, we reserve index i to denote one supplier and j

to denote the other, i.e., j ̸= i; therefore, either (i, j) = (1, 2) or (i, j) = (2, 1).

At the beginning of period t, each supplier i orders a non–negative quantity ahead

of demand, based on his inventory level, xi,t ∈ R, and his placement or ranking in the

buyer’s list, αi,t ∈ {1, 2}, where 1 indicates the top of the list or high ranking and 2

indicates the bottom or low ranking. The order arrives before the end of the period,

raising the supplier’s inventory level to yi,t ≥ xi,t.

At the end of the period, the buyer selects the high-ranking supplier and demands

from him a random quantity wt. If the supplier meets all the demand at once, he is

kept at the top of the list and carries any leftover inventory to the next period. If he

fails to meet all the demand at once, the buyer backorders the unmet demand with

him and moves him to the bottom of the list, thereby bringing his competitor to the

top. In other words, the buyer rewards her suppliers with loyalty if they serve her

well but punishes them by switching at the first service failure. We refer to the streak

of periods during which the buyer selects the same supplier before she switches to the

other supplier as a supply run.

The demands {wt, t = 0, 1, . . . } are based on the buyer’s needs and are indepen-

dent of the suppliers’ past service. We assume that they are i.i.d. continuous random

variables with p.d.f., c.d.f., and mean, f(·), F (·), and θ, respectively. Based on the

above assumptions, the demand seen by supplier i in period t is wt1{αi,t=1}, where

1{·} is the indicator function.

The idea that a stockout incident has a fixed adverse impact on the standing of the

supplier who runs out of stock, irrespective of the shortage quantity or time, has been

addressed in the literature for the most part by considering a fixed cost per stockout
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occasion or a minimum type-I service level constraint. One of the interpretations of

the fixed cost is that it is a penalty for the buyer’s loss of goodwill and hence future

demand, due to the stockout Çetinkaya and Parlar (1998). Yet, almost always, it is

assumed that the demand is unaffected by the stockout. In our model, the effect of

a stockout on the supplier’s demand is the direct consequence of the buyer’s carrot-

and-stick selection policy which signals the buyer’s discontent about the stockout

and stimulates competition between the suppliers. Moreover, we assume that the

suppliers know their ranking before they order so that they know what to expect;

hence, we are in a full information setting.

Based on the above assumptions, supplier i’s inventory level and ranking are

updated as follows:

xi,t+1 = yi,t − wt1{αi,t=1}, (3.1)

αi,t+1 = αi,t + 1{αi,t=1,yi,t<wt} − 1{αi,t=2,yj,t<wt}. (3.2)

In each period, supplier i incurs an acquisition cost ci per item ordered and receives

a revenue (price) ri per item sold. The quantity sold is min(yi,t, wt1{αi,t=1}). We also

assume that he incurs an inventory cost of hi per item in inventory and a backorder

cost of bi per item short at the end of the period. Typically, bi is a transaction or some

other friction cost for managing the backorder. To ensure that the supplier can be

profitable even with backorders, we also assume that pi > bi, where pi is the per-unit

profit margin defined as pi = ri − ci.

The profit of supplier i in period t is ri[(xi,t)
− + min(yi,t, wt1{αi,t=1})] − ci(yi,t −

xi,t)−hi(yi,t−wt1{αi,t=1})
+−bi(wt1{αi,t=1}−yi,t)+, where we use the notation: (x)+ =

max(x, 0) and (x)− = (−x)+, x ∈ R. After rolling the xi,t terms backwards for one

period, similarly to Liberopoulos and Deligiannis (2022), the profit in period t can be

recast as the following function of yi,t:

gi(αi,t, yi,t, wt) = piwt1{αi,t=1} − hi(yi,t − wt1{αi,t=1})
+ − bi(wt1{αi,t=1} − yi,t)

+. (3.3)

Given the suppliers’ decisions yi,t, yj,t, t = 0, 1, . . ., the expected average profit of
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supplier i is

Πi(yi,0, yj,0, yi,1, yj,1, . . .) = lim
T→∞

1

T
E

[
T−1∑
t=0

gi(αi,t, yi,t, wt)

]
,

where the dependence of Πi on yj,t stems from the dependence of αi,t+1 on yj,t from

(3.2).

3.3 The suppliers’ optimal policy and payoff

Before analyzing the model of the two suppliers, it is worth noting that in the ab-

sence of supplier j, supplier i will behave as a single multi-period newsvendor with

backorders, whose optimal ordering policy is a basestock policy with basestock level

si, and whose period profit is gi(1, si, w). His expected average profit, as a function

of si, denoted by Gi(si) = E[gi(1, si, w)], and its first two derivatives are given by

Gi(si) = piθ − hiE
[
(si − w)+

]
− biE

[
(w − si)

+
]
, (3.4)

G′
i(si) = −hiF (si) + biF̄ (si), (3.5)

G′′
i (si) = −(hi + bi)f(si). (3.6)

From (3.6), Gi(si) is concave, so the optimal basestock level of the newsvendor,

denoted by smi , is the solution of the first-order condition, G′(si) = 0, given by the

well-known critical fractile formula,

smi = F−1

(
bi

hi + bi

)
. (3.7)

We refer to smi as the myopic basestock level of supplier i because it maximizes the

single-period expected average profitGi(si). From (3.4) and (3.5), Gi(0) = (pi−bi)θ >
0, G′

i(0) = bi > 0, and limsi→∞Gi(si) = −∞, implying that Gi(si) crosses zero and
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becomes negative at a finite point, denoted by sMi , satisfying

Gi(s
M
i ) = 0, (3.8)

such that G(si) > 0, si < sMi , and G(si) < 0, si > sMi . This means that for basestock

levels larger than sMi , the newsvendor incurs losses.

Going back to the dual-sourcing model, the structure of the optimal policy for

each supplier and the resulting expected average profit over an infinite horizon is

given by the following proposition.

Theorem 3.1. The optimal ordering policy of supplier i is a ranking-dependent base-

stock policy, denoted by y∗i (αi), given by

y∗i (2) = 0 and y∗i (1) = si ≥ 0. (3.9)

Under this policy, the expected average profit (payoff) of supplier i, as a function of

si and sj, denoted by Πi(si, sj), is

Πi(si, sj) = πi(si, sj)Gi(si), (3.10)

where

πi(si, sj) =
F̄ (sj)

F̄ (sj) + F̄ (si)
, (3.11)

and Gi(si) is given by (3.4).

We refer to si and sj as the active basestock levels of supplier i and j, respectively,

because the suppliers use them when they are “active”, i.e., when they are at the top

of the buyer’s list, enjoying her loyalty. Figure 3.1 shows a sample trajectory of the

suppliers’ inventory levels under the optimal ordering policy. The buyer switches

suppliers after every supply run. If we join together the segments of supplier i’s

inventory trajectory when αi = 1, i.e., during his supply runs where he is active,

ignoring the segments when αi = 2, the resulting trajectory coincides with that of a

multi-period newsvendor with backorders who in every period orders up to si. His

expected average profit in this case is Gi(si) given by (3.4). In the remaining segments
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Figure 3.1: Sample trajectory of the suppliers’ inventory levels.

of the trajectory when αi = 2, i.e., during supplier j’s runs, supplier i is inactive and

has zero inventory and zero profits. Therefore, his overall payoff is Gi(si) weighted

by the fraction of time that αi = 1, denoted by πi(si, sj) and given by (3.11). This

fraction represents the expected average demand share of supplier i.

The expected average fill rate seen by the buyer is denoted by q(si, sj) and is given

by q(si, sj) = πi(si, sj)Fi(si) + πj(si, sj)Fj(sj). From (3.11), this can be written as

q(si, sj) = 1− 2F̄ (sj)F̄ (si)

F̄ (sj) + F̄ (si)
. (3.12)

3.4 Supplier competition

If the suppliers compete for the buyer’s patronage, the problem of each supplier i

is to choose an active basestock level si that maximizes Πi(si, sj) defined in (3.10).
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From (3.10) and (3.11), the first partial derivative of Πi(si, sj) with respect to si is

∂Πi(si, sj)

∂si
=

F̄ (sj)(
F̄ (sj) + F̄ (si)

)2ϕi(si, sj), (3.13)

where ϕi(si, sj) and its first partial derivatives are given by

ϕi(si, sj) =
(
F̄ (sj) + F̄ (si)

)
G′

i(si) + f(si)Gi(si), (3.14)

∂ϕi(si, sj)

∂si
=
(
F̄ (sj) + F̄ (si)

)
G′′

i (si) + f ′(si)Gi(si), (3.15)

∂ϕi(si, sj)

∂sj
= −f(sj)G′

i(si). (3.16)

3.4.1 Best response function

From (3.10), the optimal value of si that maximizes the payoff of supplier i, Πi(si, sj),

depends on sj. Let s
∗
i (sj) denote the optimal active basestock level of supplier i given

sj, henceforth referred to as the best response (function) of supplier i. The following

proposition provides upper and lower bounds on s∗i (sj).

Proposition 3.1. The best response s∗i (sj) is bounded as follows:

0 < smi < s∗i (sj) < sMi , sj ∈ [0,∞), (3.17)

where smi and sMi satisfy (3.7) and (3.8).

Proposition 3.1 states that the best response of supplier i is higher than his myopic

basestock level smi . By setting si above smi , the supplier compromises part of his

expected myopic profit G(si) to extend his stay at the top of the buyer’s list, thus

increasing his long-term average demand share πi(si, sj) and the resulting profits.

This means that using basestock level smi , although myopically optimal, will lead to

payoff losses in the long run.

Given that ∂Πi(si, sj)/∂si > 0, for 0 ≤ si ≤ smi , and ∂Πi(si, sj)/∂si < 0, for si ≥
sMi , the first-order condition ∂Πi(si, sj)/∂si = 0 has at least one solution in (smi , s

M
i ).
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The solution that corresponds to the global maximizer of Πi(si, sj) is the best response

s∗i (sj). From (3.4), (3.5), and (3.13), note that all the solutions including s∗i (sj)

depend on F (·), hi, and bi, as does the myopic basestock level smi . In addition, they

depend on pi and sj. The bounds on s
∗
i (sj) given by (3.17), however, are independent

of sj. The following proposition provides a condition under which the best response

s∗i (sj) is unique.

Theorem 3.2. If the following condition holds:

∂ϕi(si, sj)

∂si
< 0, si ∈ (smi , s

M
i ), sj ∈ [0,∞), (3.18)

the best response s∗i (sj) is

(i) a global maximizer of the payoff Πi(si, sj) uniquely satisfying ∂Πi(si, sj)/∂si = 0,

which reduces to

ϕi(s
∗
i (sj), sj) = 0, (3.19)

(ii) increasing in sj, and its derivative with respect to sj is

∂s∗i (sj)

∂sj
= −∂ϕi(s

∗
i (sj), sj)/∂sj

∂ϕi(s∗i (sj), sj)/∂si
, (3.20)

(iii) increasing in θ, pi, bi, and decreasing in hi.

Theorem 3.2 (i) states that under condition (3.18), Πi(si, sj) has a unique maxi-

mum, guaranteeing the uniqueness of the best response. Condition (3.18) is very mild

and is easily satisfied. From (3.15), the first term in ∂ϕi(si, sj)/∂si involving G
′′
i (si)

is negative by (3.6). If the demand density f(w) is non–increasing, as is the case with

the exponential distribution, then the second term is non–positive, and the condition

is met.

A more careful look at (3.15) reveals that in order for the second term to be

non–positive, f(si) does not have to be decreasing for all si > 0 but only for si ∈
(smi , s

M
i ), because we know from (3.17) that s∗i (sj) ∈ (smi , s

M
i ). For example, if f(w)

is unimodal with mode ν (i.e., ν is the maximizer of f(w), above which f(w) is
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decreasing) and smi ≥ ν, then f ′(si) ≤ 0, si ≥ smi . The condition smi ≥ ν holds

for many unimodal distributions, for reasonable values of the newsvendor critical

fractile bi/(hi + bi). Indicatively, if bi/(hi + bi) ≥ 0.5, then smi ≥ µ1/2, where µ1/2

denotes the median of f(w). In this case, if µ1/2 ≥ ν, then smi ≥ ν. The inequality

µ1/2 ≥ ν is satisfied for many common distributions with non–negative skewness, such

as the Normal, Lognormal, Weibull, Gamma, and other distributions. For instance,

if w ∼ Normal(θ, σ2), then µ1/2 = ν = θ. If w ∼ Logromal(µ, σ2), then µ1/2 =

exp(µ) > exp(µ − σ2) = ν. If w ∼ Weibull(λ,m), with m < 1/(1 − ln 2) ≈ 3.2589,

then µ1/2 = λ(ln 2)1/m > λ[(m − 1)/m]1/m = ν. If w ∼ Gamma(m, ξ), with m ≥ 1,

then µ1/2 ∈ ((m− 1/3)η,mξ) > (m− 1)ξ = ν Chen and Rubin (1986).

Even if f(w) is increasing in all or parts of the interval (smi , s
M
i ), condition (3.18)

will still hold if

f ′(si) < −
(
F̄ (sj) + F̄ (si)

) G′′
i (si)

G(si)
, si ∈ (smi , s

M
i ), sj ∈ [0,∞), (3.21)

where the right-hand side of the above inequality is positive.

Finally, note that (3.18) is a sufficient and not a necessary condition, that is,

s∗i (sj) may be unique even if (3.18) does not hold. More specifically, (3.18) implies

that ϕi(si, sj) is strictly decreasing in (smi , s
M
i ), which guarantees that it will cross

zero at exactly one point. It is possible, however, that ϕi(si, sj) crosses zero at exactly

one point without being decreasing everywhere in (smi , s
M
i ). In this case, s∗i (sj) will

still be unique.

If the first-order condition ∂Πi(si, sj)/∂si = 0 does not have a unique solution,

then each solution s∗i (sj) is either a local extremum or an inflection point. In this

case, one can always evaluate Πi(si, sj) at each solution to determine the maximizer

of the payoff.

Theorem 3.2 (ii) and (iii) provide important monotonicity properties of s∗i (sj).

Property (iii) is the same as the respective property in the model of a single multi-

period newsvendor with backorders. Property (ii) states that s∗i (sj) is increasing in
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sj and can be expressed as

s∗i (sj) = s∗i (0) +

∫ sj

0

∂s∗i (y)

∂y
dy, (3.22)

where s∗i (0) is the solution of equation (3.14), for sj = 0, and ∂s∗i (y)/∂y is given by

(3.20) for sj = y. This implies that if supplier j increases his active basestock level,

supplier i will follow suit to mitigate his loss of demand share.

3.4.2 Nash equilibrium

From the previous discussion, competition pushes both suppliers to move away from

their myopic basestock levels in an escalating inventory contest, benefiting the buyer.

Does this rivalry ever settle? The following theorem suggests that it does.

Theorem 3.3. If condition (3.18) holds for i = 1, 2, then

(i) There exists at least one pure-strategy Nash equilibrium (sei , s
e
j) satisfying (3.19)

for i = 1, 2.

(ii) Each Nash equilibrium (sei , s
e
j) is increasing in θ, pi, pj, bi, bj and decreasing in

hi, hj.

(iii) If the following condition holds:

∂s∗i (sj)

∂sj
< 1, sj ∈ (smj , s

M
j ), i = 1, 2, (3.23)

the Nash equilibrium is unique.

Figure 3.2 shows indicative graphs of the best response functions of the two suppli-

ers under condition (3.18) which guarantees their uniqueness. As both graphs show,

the two functions cross each other at least at one point because both are increasing

and bounded from above and below. The crossing points are the Nash equilibria

that always belong in region B, i.e., sei ∈ (smi , s
M
i ), i = 1, 2. In graph (b), condition

(3.23) holds, and therefore the Nash equilibrium is unique. Theorem 3.3 (ii) implies
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Figure 3.2: Best response functions of the two suppliers and Nash equilibrium (sei , s
e
j).

that if one of supplier j’s parameter values changes, not only does he respond by

changing his active basestock level, but supplier i also changes his active basestock

level in response to j’s response. Condition (3.23) is necessary and sufficient for the

best response to being a contraction mapping, implying the uniqueness of the Nash

equilibrium.

The fact that the suppliers’ active basestock levels at equilibrium are higher than

their myopic levels implies that the buyer’s carrot-and-stick behavior is successful in

raising the fill rate that she enjoys under supplier competition. The reduction in the

frequency of stockouts resulting from the increase in the basestock levels limits the

role of the backorder cost rates bi for the suppliers.

If the suppliers are symmetric (identical), i.e., pi = p, hi = h, bi = b, for i = 1, 2,

implying that Gi(y) = G(y), for i = 1, 2, the Nash equilibrium is unique and is given

by the following proposition.

Proposition 3.2. If the suppliers are symmetric and condition (3.18) holds, then

(i) There exists at least one symmetric pure-strategy Nash equilibrium (se, se), where

se satisfies
f(se)

F̄ (se)
= −2G′(se)

G(se)
. (3.24)

The resulting payoff of each supplier i is

Πi(s
e, se) =

G(se)

2
, i = 1, 2. (3.25)
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(ii) There exist no asymmetric pure-strategy Nash equilibria.

(iii) If the following condition holds:

∂ϕ̂(s)

∂s
< 0, s ∈ (sm, sM), (3.26)

where ϕ̂(s) = ϕ(s, s), then the symmetric equilibrium is unique.

Note that if the suppliers are symmetric, condition (3.23) is not needed for the

uniqueness of the Nash equilibrium, because the first-order conditions for the two

suppliers reduce to one equation (because of symmetry) which has a unique solution,

under (3.18).

3.5 Supplier cooperation

In the previous section, we saw that the non-cooperative game of the suppliers forces

them to increase their active basestock levels above their myopic levels, compromising

their profits. Now, suppose that the suppliers decide to team up to reduce their

total inventory costs, perhaps as a result of consolidation (merger or acquisition)

or an agreement to split the benefits from this reduction. What is the optimal joint

inventory policy and gain of the suppliers in this case, and what is the adverse impact

of their cooperation on the buyer’s fill rate? Moreover, what can the buyer do to

recover the fill rate that she enjoyed under competition? In this section, we address

these questions.

3.5.1 The suppliers’ gain

If the suppliers team up, the optimal ordering policy of each supplier in the team

has the same structure as that under competition, given by Theorem 3.1. Moreover,

the team’s payoff is the sum of the individual payoffs of the suppliers. The problem

for the team is to choose an active basestock level pair (si, sj) that maximizes the

team’s payoff, denoted by Π(si, sj), by carefully balancing the expected period profits



3.5. SUPPLIER COOPERATION 65

and the long-term average demand share of each supplier defined in (3.10). More

specifically, Π(si, sj) and its first partial derivative with respect to si are

Π(si, sj) = Πi(si, sj) + Πj(si, sj) = πi(si, sj)Gi(si) + πj(si, sj)Gj(sj). (3.27)

∂Π(si, sj)

∂si
=

F̄ (sj)(
F̄ (sj) + F̄ (si)

)2ψi(si, sj), (3.28)

where ψi(si, sj) and its first partial derivatives are given by

ψi(si, sj) = ϕi(si, sj)− f(si)Gj(sj), (3.29)

∂ψi(si, sj)

∂si
=
∂ϕi(si, sj)

∂si
− f ′(si)Gj(sj), (3.30)

∂ψi(si, sj)

∂sj
= −f(sj)G′

i(si)− f(si)G
′
j(sj), (3.31)

and where ϕi(si, sj), ∂ϕi(si, sj)/∂si, and ∂ϕi(si, sj)/∂sj are given by (3.14)–(3.16).

Under competition, we saw that the Nash equilibrium (sei , s
e
j) always resides in the

region B of Figure 3.2, that is, the active basestock levels at equilibrium are larger

than the myopic basestock levels. Does this also hold for the optimal active basestock

level pair under cooperation, denoted by (sci , s
c
j)? The following theorem answers this

question.

Theorem 3.4. The optimal active basestock level pair (sci , s
c
j) and the resulting max-

imum team payoff Π(sci , s
c
j) satisfy

(i) If Gi(s
m
i ) = Gj(s

m
j ), then

sci = smi , i = 1, 2, (3.32)

Π(sci , s
c
j) = Π(smi , s

m
j ) = Gi(s

m
i ) = Gj(s

m
j ). (3.33)

(ii) If Gi(s
m
i ) < Gj(s

m
j ), then

sci ∈ [0, smi ) and s
c
j ∈ (smj , s

M
j ), (3.34)

Gi(s
m
i ) < Π(smi , s

m
j ) < Π(sci , s

c
j) < Gj(s

c
j). (3.35)
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In both cases:

Π(sci , s
c
j) > Π(sei , s

e
j), (3.36)

where Π(sei , s
e
j) = Πi(s

e
i , s

e
j) + Πj(s

e
i , s

e
j) is the sum of the payoffs of the two suppliers

at equilibrium under competition.

Expressions (3.32) and (3.34) state that under cooperation, the optimal active

basestock level of one supplier is at or below his myopic basestock level, and therefore

below his Nash equilibrium, whereas the optimal active basestock level of the other

supplier is at or above his myopic basestock level. Expression (3.36) states that in

both cases, the team payoff under cooperation is greater than the sum of the payoffs

at equilibrium under competition.

If Gi(s
m
i ) = Gj(s

m
j ), both suppliers use their myopic basestock levels, reaping

the maximum possible profits for the team. A special case is when the suppliers are

symmetric, given by the following corollary.

Corollary 3.1. If the suppliers are symmetric, the optimal active basestock levels

and the resulting team payoff under cooperation are:

sci = sm, i = 1, 2, (3.37)

Π(sm, sm) = G(sm). (3.38)

Corollary 3.1 implies that the two cooperating symmetric suppliers behave as one

newsvendor in the buyer’s eyes.

If Gi(s
m
i ) < Gj(s

m
j ), supplier i has a smaller myopic profit than supplier j, so he

uses an active basestock level that is below his myopic basestock level, ceding a part

of his demand share to the more profitable supplier j, who uses an active basestock

level which is above his myopic basestock level. Therefore, the suppliers use active

basestock levels that reside in the region A of Figure 3.2. If Gi(s
m
i ) > Gj(s

m
j ),

the reverse is true, and the suppliers use active basestock levels in region D. In both

cases, both suppliers sacrifice some of their myopic profits to optimally rebalance their

demand shares by transferring some of the buyer’s business from the less profitable

to the more profitable supplier.
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To visualize the behavior of (sci , s
c
j), suppose that hi = Iici and bi = Jici, where Ii

and Ji are some proportionality constants. Then, from (3.4), Gi(si) is decreasing in

ci and so is the ratio Gi(s
m
i )/Gj(s

m
j ), while from (3.7), smi is constant in ci because

bi/(hi + bi) = Ji/(Ii + Ji) is independent of ci. Figure 3.3 shows a curve tracing the

position of (sci , s
c
j) as a function of ci. The red part of the curve represents the set

𝑠𝑠𝑖𝑖
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𝐴𝐴 𝐵𝐵

𝐶𝐶 𝐷𝐷

Figure 3.3: Position of the optimal active basestock level pair when the two suppliers
cooperate.

of points (sci , s
c
j) that corresponds to large values of ci such that Gi(s

m
i ) < Gj(s

m
j ).

The blue part represents the set of points that correspond to small values of ci such

that Gi(s
m
i ) > Gj(s

m
j ). If Gi(s

m
i ) is too small or too big, then sci or s

c
j becomes zero,

respectively.

A question that arises naturally is, when does the less profitable supplier set his

active basestock level at zero, thereby ceding almost all his demand share to the more

profitable supplier? We say “almost,” because even if the less profitable supplier sets

his active basestock level at zero, the buyer will still return to him occasionally for

a supply run of just one period whenever the more profitable supplier fails her. A

follow-up question is, how is the optimal active basestock level of the more profitable

supplier compared to his active basestock level at equilibrium under competition?

The following theorem answers these questions under conditions that guarantee the

uniqueness of the optimal active basestock level pair.

Theorem 3.5. Assuming without loss of generality that Gi(s
m
i ) < Gj(s

m
j ), if the
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following conditions hold:

∂ψk(si, sj)

∂sk
< 0, k = i, j, si ∈ [0, smi ), sj ∈ (smj , s

M
j ), (3.39)

the optimal active basestock level pair (sci , s
c
j) is a global maximizer of the team payoff

Π(si, sj) satisfying

(i) If ψi(0, s
c
j) > 0, then sci > 0 and the pair (sci , s

c
j) uniquely satisfies ∂Π(si, sj)/∂sk =

0, k = i, j, which reduces to

ψk(s
c
i , s

c
j) = 0, k = i, j, (3.40)

implying that

fi(s
c
i)G

′
j(s

c
j) + f(scj)G

′
i(s

c
i) = 0. (3.41)

Otherwise, sci = 0 and scj uniquely satisfies ∂Π(0, sj)/∂sj = 0, which reduces to

ψj(0, s
c
j) = 0. (3.42)

(ii) If condition (3.18) holds for both suppliers, then scj < sej.

Theorem 3.5 (i) provides a condition under which the active basestock level of the

less profitable supplier i is strictly positive. If this condition holds, (3.41) implies that

the relative values of sci and s
c
j depend only on hi, bi, and f , even though from (3.40)

their individual values depend on all problem parameters. If this condition does not

hold, supplier i sets his active basestock level at zero, ceding almost all his business

to the more profitable supplier j.

A question that arises, in this case, is, how high does scj become to curtail the

frequency of the buyer’s occasional visits to supplier i. Does it ever increase above

the Nash equilibrium sej? Theorem 3.5 (ii) implies that it does not if the conditions

ensuring the existence of a Nash equilibrium hold. Therefore, under these conditions,

the optimal active basestock levels of both suppliers under cooperation are smaller

than their respective active basestock levels at Nash equilibrium.
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Finally, as mentioned earlier, from (3.36), the team payoff under cooperation is

greater than the sum of the payoffs at equilibrium. The loss in efficiency for the

suppliers, if they compete instead of cooperating, can be measured by the ratio of

their optimal team payoff under cooperation to their worst total payoff at equilibrium

under competition, known as the price of anarchy (PoA), i.e.,

PoA =
Π(sci , s

c
j)

min(sei ,s
e
j)
{Π(sei , sej)}

. (3.43)

3.5.2 The buyer’s perspective

We note that PoA defined in (3.43) usually refers to the degradation of social wel-

fare due to the selfish behavior of agents, whereas in our case, it is the suppliers’

profits that are at stake. Moreover, the loss in efficiency for the suppliers is a gain

in service quality for the buyer. The buyer’s carrot-and-stick behavior is precisely

meant to raise the fill rate that she enjoys by stimulating competition, and it does

so successfully. If the tables are turned and the suppliers decide to cooperate instead

of competing, the buyer loses the high–fill rate advantage that her behavior incites.

What counteroffensive action can she take in this case to gain back that advantage?

One plausible countermeasure for the buyer is to charge the suppliers an extra back-

order penalty rate—different from the regular backorder cost rate bi that we have

been using thus far—to force them to increase their active basestock levels. The

question then is, what should the value of this penalty cost be to make the suppliers

raise their active basestock levels to their equilibrium values? We call this value the

adjustment backorder penalty rate. To compute this penalty rate, we assume that

the suppliers are symmetric for mathematical simplification. Moreover, we assume

that their common regular backorder cost rate b is zero. As mentioned earlier, under

supplier competition, the role of b is weakened anyway because the increase in the

suppliers’ active basestock levels reduces the frequency of stockouts. As the suppliers

are symmetric, the buyer charges them a common backorder penalty rate denoted by

bc.

If the suppliers compete, from Proposition (3.2), there exists a unique symmetric



70 CHAPTER 3. COMPETITION/COOPERATION FOR BUYER DEMAND

Nash equilibrium se satisfying (3.24). After substituting G(se) and G′(se) from (3.4)

and (3.5), respectively, dividing them by h, and setting b = 0, expression (3.24)

becomes

f(se)
(
(p/h)θ − E[(se − w)+]

)
= 2F (se)F̄ (se). (3.44)

From the above expression, se depends on the buyer’s distribution and the ratio

p/h. If h = Ic, where I is the interest rate, then p/h = [(r − c)/c]/I, i.e., p/h is the

ratio of the margin rate to the interest rate. If the suppliers decide to cooperate, then

from (3.37), they set their symmetric active basestock levels at sm, where sm is given

by (3.7) after replacing b with bc. So, if the buyer wants to recover the fill rate that

she can enjoy under supplier competition, she must set bc so that sm = se, where se

satisfies (3.44), i.e.,

bc = h
F (se)

F̄ (se)
. (3.45)

3.6 Exponentially distributed demand

To better comprehend the results developed in the previous sections and their im-

plications, we apply them to the case where the buyer’s demand is exponentially

distributed. The exponential distribution has been used in many newsvendor model

applications over the years Mahajan and van Ryzin (2001); Liyanage and Shanthiku-

mar (2005); Rossi, Prestwich, Tarim and Hnich (2014); Ülkü and Gürler (2018); Siegel

and Wagner (2021). Besides, the mathematical tractability that it offers, it has been

recognized to effectively describe highly variable demand Lau (1997); Gallego, Katir-

cioglu and Ramachandran (2007).

3.6.1 Analytical results

If the buyer’s demand is exponentially distributed with rate λ, then

f(w) = λe−λw, F̄ (w) = e−λw, w ≥ 0, λ > 0, and θ = 1/λ. (3.46)

To facilitate our analysis, we use the Lambert W function, defined as the inverse
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function of wew, i.e., W (z) = w ⇔ z = wew. The Lambert W function is often

used to solve equations in which the unknown appears both outside and inside an

exponential function or a logarithm. It has the following properties which are useful

for our analysis:

(i) W (z) is increasing and concave in (−1/e,∞) and positive in (0,∞).

(ii) W (wew) = w.

(iii) W ′(z) =
W (z)

z[1 +W (z)]
, for z ̸∈ {0,−1/e}.

To simplify notation, we also define the following ratios:

ρi =
pi
hi
, (3.47)

βi =
bi + hi
hi

. (3.48)

As mentioned in the previous section, if hi = Iici, where Ii is the interest rate

used by supplier i, then ρi represents the margin-to-interest rate ratio of supplier i.

Using this notation, if f(w) is given by (3.46), we can obtain exact expressions for

Gi(si), G
′
i(si), s

m
i , s

M
i , Gi(s

m
i ), Πi(si, sj), ϕi(si, sj), and ψi(si, sj). These expressions

are given in Appendix B.

As mentioned in the discussion following Theorem 3.2, if f(w) is non–increasing,

condition (3.18) holds, guarantying the uniqueness and monotonicity of the best re-

sponse. In the case of the exponential distribution, the best response is given in closed

form in the following proposition.

Proposition 3.3. If f(w) is given by (3.46), the best response s∗i (sj) is

(i) unique and given by

s∗i (sj) =
ρi + βie

−λsj −W
(
eρi+βie

−λsj−λsj

)
λ

, sj ∈ [0,∞), (3.49)
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(ii) bounded as follows:

smi < s∗i (0) < s∗i (sj) < lim
sj→∞

s∗i (sj) < sMi , (3.50)

where s∗i (0) = [ρi + βi −W (eρi+βi)]/λ, limsj→∞ s∗i (sj) = ρi/λ, and s
m
i and sMi

are given by (B.6) and (B.10), respectively, in Appendix B.

Expression (3.49) implies that s∗i (sj) is increasing in ρi and βi which also verifies

Theorem 3.2 (iii). Moreover, (3.50) provides tighter lower and upper bounds than smi

and sMi , respectively.

From Theorem (3.3) (i), condition (3.18) also implies the existence of at least

one pure-strategy Nash equilibrium. The following proposition states that the Nash

equilibrium is unique and provides the equations to compute it.

Proposition 3.4. If f(w) is given by (3.46), there exists a unique pure-strategy Nash

equilibrium (sei , s
e
j) satisfying

sej =
1

λ
ln

(
eλs

e
i − βi

ρi − λsei

)
, i = 1, 2. (3.51)

The proof is based on showing that condition (3.23) holds for the exponential case.

From (3.51), the active basestock level of supplier j at equilibrium is increasing and

concave in sei and decreasing in ρi, βi. The system of equations given by (3.51) cannot

be solved analytically. However, for the symmetric case, we can obtain a closed-form

solution which is given by the following corollary.

Corollary 3.2. If the suppliers are symmetric and f(w) is given by (3.46), there

exists a unique pure-strategy Nash equilibrium (sei , s
e
j) which is symmetric, i.e., sei =

sej = se, where se is given by:

se =
ρ− 1 +W (βe1−ρ)

λ
. (3.52)
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The resulting payoff of each supplier i is

Πi(s
e, se) =

h (1−W (βe1−ρ))

λ
, i = 1, 2. (3.53)

The proof follows from Proposition 3.2. Equation (3.52) can also be derived from

(3.51) after dropping the supplier indexes and solving for se.

The following result regards the cooperation of the suppliers.

Proposition 3.5. If f(w) is given by (3.46) and assuming without loss of generality

that

∆p > hj ln(βj)− hi ln(βi), (3.54)

where ∆p = pj − pi = hjρj − hiρi, then the optimal active basestock level pair (sci , s
c
j)

satisfies:

If ∆p < hj ln(K), where K = βj + (βi − 1)hi/hj, then s
c
i ∈ (0, smi ), s

c
j ∈ (smi , s

M
j )

and the pair (sci , s
c
j) uniquely satisfies

hjs
c
j − his

c
i =

∆p

λ
, (3.55)

hie
λsci + hje

λscj = hiβi + hjβj. (3.56)

Otherwise:

sci = 0, and scj =
µ−W (eµ)

λ
, (3.57)

where µ = ∆p/hj −K.

Proposition (3.5) states that if the difference in the margins of the suppliers,

∆p = pj −pi, is larger than the difference hj ln(βj)−hi ln(βi), then Gi(s
m
i ) < Gj(s

m
j ).

This means that supplier j is more profitable than supplier i. So, when the suppliers

team up, supplier j uses a basestock level that is above his myopic basestock level,

while supplier i uses a level that is below his myopic basestock level, ceding a part of

his demand share to supplier j. Therefore, the suppliers use active basestock levels

in region A of the (si, sj) space shown in Figure 3.3. If, in addition, ∆p ≥ hj ln(K),

then supplier i sets his active basestock level at zero, ceding almost all his demand

share to supplier j.
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Note that ∆p does not have to be positive for supplier j to be more profitable

than supplier i. That is, supplier j can have a smaller margin than supplier i, i.e.,

∆p < 0, and still be more profitable than i, if ∆p > hj ln(βj)−hi ln(βi). In this case,

however, ∆p will certainly be smaller than hj ln(K), which means that supplier i will

not set his active basestock level at zero.

If ∆p < hj ln(K), the optimal active basestock levels of the two suppliers uniquely

solve equations (3.55) and (3.56). If we substitute λscj from the first equation into

the second, we obtain an equation of the form

a1x
a2 + a2x = a3,

where a1 = e∆p/hj , a2 = hi/hj, a3 = (hiβi + hjβj)/hj, and x = eλs
c
i . This equation is

increasing in x and has a unique solution. In general, however, we cannot obtain a

closed form for it, except for special cases, e.g., when a2 = 1, 2, etc. An interesting

result is given by the following corollary.

Corollary 3.3. If ∆p = 0 and hi = hj = h, then sci = scj = sc, where

sc =
ln(β̄)

λ
, (3.58)

where β̄ = (b̄+ h)/h and b̄ = (bi + bj)/2.

The proof follows from (3.55) and (3.56). The intuition behind Corollary 3.3 is

that if the suppliers have the same margins and inventory cost rates, they bring in

the same profits to the team and incur the same inventory costs, so there is no reason

for them not to split the demand by setting their active basestock levels equal to each

other. If the suppliers have different backorder cost rates, say bi > bj, then s
c
i < smi

and scj > smj , but the important fact remains that sci = scj. To see why the difference

in the backorder cost rates makes no difference, consider the following. Every time

supplier i fails to deliver on-demand, the team pays bi, and every time supplier j fails,

the team pays bj. Because the supplier switches from one supplier to the other, the

team pays bi + bj in every full cycle with two switches. Although, this cost matters,

how it is divided among the suppliers is not important for the team’s profit, because
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it will be paid by the team as a sum. Based on this argument, we conjecture that the

main result of the corollary, i.e., that sci = scj = sc, holds for any demand distribution.

Expression (3.58) is special to the exponential distribution.

Finally, if the suppliers are symmetric, then by Corollary 3.1, their maximum team

payoff is G(sm), which for the exponential case is given by (B.11), after dropping the

supplier index. On the other hand, the payoff of each supplier under the unique Nash

equilibrium is given by (3.53). Therefore, for the symmetric case, the price of anarchy

defined in (3.43) becomes:

PoA =
ρ− ln(β)

2 (1−W (βe1−ρ))
. (3.59)

If the symmetric suppliers decide to cooperate, the adjustment backorder penalty

rate bc that the buyer must charge them to recover the fill rate that she can enjoy

under supplier competition (assuming that b = 0) is found, after the analysis in

Section 3.5.2, by setting sm = se, where sm is given by (B.6) in Appendix B with

β = (bc + h)/h and se is given by (3.52) with β = 1 (since b = 0), and solving for bc.

The solution is

bc = h
(
eρ−1+W(e1−ρ) − 1

)
. (3.60)

From (3.60), bc is h times a factor that is approximately exponentially increasing

in ρ since W (e1−ρ) ∈ (0, 1) for ρ > 0. This is expected, because as ρ increases, the

margin p becomes increasingly more important than the inventory holding cost rate

h, pushing the active basestock levels at equilibrium increasingly higher. Therefore, if

the suppliers cooperate, the buyer needs to charge them an increasingly larger penalty

rate bc to make them raise their active basestock levels to the equilibrium values.

3.6.2 Numerical example

We illustrate the analytical results developed in the previous subsection with a numer-

ical example, also investigating the effect of the problem parameters on the optimal

active basestock levels and the resulting performance measures. In the example, we

assume that the buyer’s demand is exponentially distributed with rate λ = 1 and that
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the inventory cost rate of each supplier k (k = i, j) is given by hk = Ikck, where Ik

is the interest rate used by the supplier. Initially, we consider a nominal instance in

which the suppliers are symmetric with parameter values ck = 1, Ik = 0.4, rk = r = 3,

and bk = b = 0.7, for k = i, j. Then, we vary the values of certain parameters one at

a time within a certain range.

As we vary each parameter value, we calculate the myopic basestock level pair

(smi , s
m
j ) from (B.6), the active basestock level pair at equilibrium (sei , s

e
j) by solving

(3.51), and the optimal active basestock level pair under cooperation (sci , s
c
j) by solving

either (3.55) and (3.56) or (3.57). We also calculate the resulting payoffs (Πe
i ,Π

e
j) and

(Πc
i ,Π

c
j) from (B.7) in Appendix B, the demand shares (πe

i , π
e
j ) and (πc

i , π
c
j) from

(3.11), and the fill rates qei and qc from (3.12). Finally, we compute the price of

anarchy PoA from (3.43), where Π(sci , s
c
j) = Πc

i + Πc
j and Π(sei , s

e
j) = Πe

i + Πe
j , and

the adjustment backorder penalty rate bc from (3.60).

Figures 3.4, 3.5, and 3.6 show plots of the above-calculated values as we vary

cj, Ij, and rj
1, respectively. The difference between cj and Ij is that while cj

Figure 3.4: Optimal basestock levels and performance measures vs. cj.

affects the margin pj = rj − cj and the inventory cost hj = Ijcj, Ij affects only hj.

Increasing either parameter, however, reduces supplier j’ payoff. On the other hand,

increasing rj, raises his payoff. For this reason, the plots in figures 3.4 and 3.5 have

the same structure, whereas the plots in Figure 3.6 have a symmetric structure. We

will therefore briefly discuss only the plots in Figure 3.4.

From the first three plots, we observe that supplier j’s active basestock level,

1We vary rj for the sake of completeness because, as the suppliers compete solely on availability,
it is natural to assume that ri ≈ rj
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Figure 3.5: Optimal basestock levels and performance measures vs. Ij.

Figure 3.6: Optimal basestock levels and performance measures vs. rj

payoff, and demand share at equilibrium and under cooperation are decreasing in cj,

reflecting the resulting drop in pj and rise in hj. Supplier i’s active basestock level at

equilibrium is also decreasing in cj, although at a smaller rate, echoing the drop in

sej . His active basestock level under cooperation, however, as well as his payoff and

demand share at equilibrium and under cooperation are increasing in cj, reflecting

the decrease in supplier j’s profitability. The active basestock levels of both suppliers

under competition are higher than their myopic levels, confirming Proposition 3.1.

When cj = ci = 1, the suppliers are symmetric and have the same active basestock

levels, payoffs, and demand shares. More specifically, their active basestock levels and

payoffs under cooperation are equal to the corresponding myopic values, confirming

Corollary 3.1. When cj > 1, supplier j becomes less profitable than supplier i, so

scj drops below smj , whereas s
c
i rises above smi , confirming Theorem 3.4 (ii). When

cj ⪆ 1.6, scj = 0, confirming Theorem 3.5 (i), whereas sci keeps increasing in cj but

remains below sei , confirming Theorem 3.5 (ii).

The fill rate that the buyer enjoys under competition is generally very high and



78 CHAPTER 3. COMPETITION/COOPERATION FOR BUYER DEMAND

is not significantly affected by cj. The fill rate under cooperation, on the other hand,

is significantly lower, dropping to approximately 65% when cj ≈ 1.6. The team

payoff under cooperation is more than double the sum of the suppliers’ payoffs under

competition, as indicated by the PoA plot.

Figure 3.7 shows plots of the optimal basestock levels and performance measures

as we vary bj. As expected, scj is increasing in bj while Πc
i is decreasing, although

Figure 3.7: Optimal basestock levels and performance measures vs. bj.

these changes are very subtle. We also observe that sci = scj and d
c
i = dcj for all values

of bj, confirming Corollary 3.3. From Figure 3.7, it appears that bj has no effect on

the active basestock levels and performance measures at equilibrium. A close-up of

the first three plots in Figure 3.7, shown in Figure 3.8, reveals that bj affects these

quantities but the effect is negligible. The reason for this is that the exponential

Figure 3.8: Close-up of optimal active basestock levels and performance measures vs.
bj.

terms in equations (3.51) are much larger than the other terms, and as a result,

the solution (sei , s
e
j) is sensitive to the multiplicative terms ρi but insensitive to the
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additive terms βi. Hence it is insensitive to the backorder cost rates. The intuition

behind this observation is that the main concern of the suppliers under competition

is to maintain the buyer’s loyalty because losing it as a result of a stockout means

relinquishing profits for many periods following the stockout. This concern drives

the suppliers to significantly increase their active basestock levels above their myopic

levels as can be seen in Figure 3.7. Avoiding paying the backorder cost is therefore

of minimal concern. Because the active basestock levels at equilibrium are so much

larger than the myopic levels, the frequency of stockouts is significantly reduced,

further limiting the impact of backorder costs, as mentioned earlier.

Figures 3.9 and 3.10 show plots of the optimal active basestock levels and perfor-

mance measures as we vary r and b.

Figure 3.9: Optimal active basestock levels and performance measures vs. r.

Figure 3.10: Optimal active basestock levels and performance measures vs. b.

From these two figures, we observe that the optimal symmetric active basestock

levels and performance measures under cooperation are sensitive in b and insensitive

in r, whereas, under competition, they are sensitive in r and insensitive in b. The

reason for this is that from (3.37), sc = sm where from (B.6), sm depends only on
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the tradeoff between h and b, expressed by β, and is independent of r. On the other

hand, from (3.52), se depends mainly on the tradeoff between h and p = r − c,

expressed by ρ. It also depends on β through the Lambert W function, but this

dependence is negligible for the same reason that the asymmetric active basestock

levels are insensitive to bj, discussed earlier.

Finally, Figure 3.11 shows plots of the adjustment backorder penalty rate bc as we

vary c, I, and r. From these figures, we observe that the effect of these parameters on

Figure 3.11: Adjustement backorder penalty cost bc vs. c, I, and r, for b = 0.

bc is dramatic, verifying our remark following (3.60) that bc is exponentially increasing

in ρ. For instance, for a 40% margin rate and a 20% interest rate, ρ = [(r− c)/c]/I =

0.4/0.2 = 2. For ρ = 2, bc = 2.6h from (3.60). For ρ = 4 and ρ = 6, bc = 20.1h

and 148.4h, respectively. In practice, it does not make sense for the buyer to raise

bc above a fraction of the selling price r. So, if the suppliers decide to cooperate and

ρ is large, the buyer will not be able to match the fill rate that she can enjoy under

supplier competition.

3.7 Extension to multiple sourcing

As we wrote in the Introduction, dual sourcing predominates multiple sourcing. Nev-

ertheless, the analysis of the two-supplier model can be straightforwardly extended

to n > 2 suppliers under the following setting. The buyer arranges the n suppliers in

a rank order list based on the last service she received. At the beginning of period t,
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each supplier i orders a non–negative quantity ahead of demand, based on his inven-

tory level, xi,t ∈ R, and his placement in the buyer’s list (ranking), αi,t ∈ {1, 2, . . . , n},
where 1 indicates the top of the list (highest ranking) and n indicates the bottom

(lowest ranking). The order arrives before the end of the period, raising the supplier’s

inventory level to yi,t ≥ xi,t.

At the end of the period, the buyer selects the highest-ranking supplier at the

top of the list and demands from him a random quantity wt. If the supplier meets

all the demand at once, he is kept at the top of the list and carries any leftover

inventory to the next period. If he fails to meet all the demand at once, the buyer

backorders the unmet demand with him and moves him to the bottom of the list,

thereby bringing all the other suppliers one position closer to the top of the list. This

way, the buyer selects all the suppliers in a round-robin fashion, switching suppliers

after every stockout.

Round-robin is a common process for fair resource allocation. It is a popular

method for scheduling processes in computer and communication systems, traffic

and transportation systems, production systems—most notably in the context of

the stochastic economic lot scheduling problem (SELSP)—and other polling systems

Boon, van der Mei and Winands (2011), scheduling games in sports tournaments

Rasmussen and Trick (2008), and other applications. It is simple, easy to implement,

and starvation-and-envy-free. It is also one of the choices for supplier allocation in

many ERP systems. For example, in SYSPRO’s Preferred Supplier feature, it is one

of the sourcing options SYSPRO (2022). In SAP’s Allocation Quota Arrangement

feature, each procurement lot is assigned to a source of supply based on its quota

rating SAP (2022c). If the quota of all sources are set equal (which is the default

value), the lots are assigned on a round-robin basis. What we propose in this paper

is for the buyer to use round-robin as a fair and starvation-free supplier selection

scheme, allowing each supplier to keep his “preferred supplier” status as long as he

can afford to before giving his turn to the next supplier.

Under this setting, Theorem 3.1 immediately extends to n suppliers. Namely, the

optimal ordering policy of supplier i is a ranking-dependent basestock policy, denoted

by y∗i (αi), given by: y∗i (αi) = 0, αi ̸= 1 and y∗i (1) = si ≥ 0. Assuming, without loss
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of generality, that the suppliers are numbered according to their initial position in

the buyer’s list, the ranking vector of the suppliers, α = (α1, . . . , αn), under the

optimal policy is a discrete-time Markov chain with n states, (1, 2, . . . , n − 1, n),

(n, 1, . . . , n−2, n−1), (n−1, n, . . . , n−3, n−2), . . ., (2, 3, . . . , n, 1), arranged clockwise

in a circle, and transition probabilities from the state where αi = 1 to the state where

αi+1 mod n = 1, equal to F̄ (si), i = 1, . . . , n, (see Figure 3.12, for n = 4).

�𝐹𝐹(𝑠𝑠1)

�𝐹𝐹(𝑠𝑠2)

�𝐹𝐹(𝑠𝑠3)

�𝐹𝐹(𝑠𝑠4)
2,3,4,1 3,4,1,2

4,1,2,31,2,3,4

𝐹𝐹(𝑠𝑠1) 𝐹𝐹(𝑠𝑠2)

𝐹𝐹(𝑠𝑠3)𝐹𝐹(𝑠𝑠4)

Figure 3.12: Markov chain transition diagram of the ranking vector for n = 4.

It is trivial to show that the steady-state probability of the state where αi = 1,

representing the expected average demand share of supplier i as a function of the

vector of active basestock levels s = (s1, . . . , sn), denoted πi(s), is given by

πi(s) =

∏
k ̸=i F̄ (sk)∑

l

∏
k ̸=l F̄ (sk)

. (3.61)

From the above expression, the expected average profit (payoff) of supplier i,

denoted by Πi(s), and its first partial derivative with respect to si are

Πi(s) = πi(s)Gi(si), (3.62)

∂Πi(s)

∂si
=

∏
k ̸=i F̄ (sk)(∑

l

∏
k ̸=l F̄ (sk)

)2ϕi(s), (3.63)

where ϕi(s) is given by:

ϕi(s) =

(∏
k ̸=i

F̄ (sk)

)
G′

i(si) +

(∑
l ̸=i

∏
k ̸=l,i

F̄ (sk)

)(
F̄ (si)G

′
i(si) + f(si)Gi(si)

)
, (3.64)
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where by convention, the products in the above expressions equal 1 if they contain

no terms.

The following Theorem extends Proposition 3.1 and Theorem 3.2 to multiple sup-

pliers, where s−i denotes the vector of active basestock levels of all suppliers except

i.

Theorem 3.6. The best response s∗i (s−i) is bounded as follows:

0 < smi < s∗i (s−i) < sMi , sk ∈ [0,∞), k ̸= i, (3.65)

where smi and sMi satisfy (3.7) and (3.8). Moreover, if the following condition holds:

∂ϕi(s)

∂si
< 0, si ∈ (smi , s

M
i ), sk ∈ [0,∞), k ̸= i, (3.66)

the best response s∗i (s−i) is

(i) a global maximizer of the payoff Πi(s), sk ∈ [0,∞), k ̸= i, uniquely satisfying

the first-order condition ∂Πi(s)/∂si = 0, which reduces to:

ϕi(s
∗
i (s−i), s−i) = 0, (3.67)

(ii) increasing in sj, and its derivative with respect to sj is

∂s∗i (s−i)

∂sj
= −∂ϕi(s

∗
i (s−i), s−i)/∂sj

∂ϕi(s∗i (s−i), s−i)/∂si
. (3.68)

(iii) increasing in θ, pi, bi, and decreasing in hi.

As in the case of the dual-sourcing model, condition (3.66) is very mild and is

easily satisfied. For example, if f(w) is non–increasing, (3.66) is immediately met.

The expression for ∂ϕi(s)/∂si is given by equation (B.2) in the proof. If we use that

expression and rearrange terms, condition (3.66) reduces to:

f ′(si) < −

( ∑
l

∏
k ̸=l F̄ (sk)∑

l ̸=i

∏
k ̸=l,i F̄ (sk)

)
G′′

i (si)

Gi(si)
, si ∈ (smi , s

M
i ), sk ∈ [0,∞), k ̸= i, (3.69)
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where the right-hand side of the above inequality is positive. The above expression

is the extension of (3.21) to n suppliers.

As in the dual-sourcing model, Theorem 3.6 (ii) implies that under condition

(3.66) if supplier j increases his active basestock level, supplier i will follow suit to

mitigate his loss of demand share. Therefore, competition drives all the suppliers to

move away from their myopic basestock levels, smi .

The issue of the existence and uniqueness of a Nash equilibrium for the general

case of asymmetric suppliers is outside the scope of this paper. Here, it suffices to

point out that the best response functions are increasing and that “increasing best

response functions is the only major requirement for an equilibrium to exist” Cachon

and Zhang (2006). The following proposition extends Proposition 3.2 to multiple

symmetric suppliers.

Proposition 3.6. If the suppliers are symmetric and condition (3.66) holds, then

(i) There exists at least one symmetric pure-strategy Nash equilibrium se = (se, . . . , se),

where se satisfies:
f(se)

F̄ (se)
= − n

n− 1

G′(se)

G(se)
. (3.70)

The resulting payoff of each supplier i is:

Πi(s
e) =

G(se)

n
, i = 1, . . . , n. (3.71)

(ii) There exists no asymmetric pure-strategy Nash equilibrium.

(iii) If the following condition holds:

∂ϕ̂(s)

∂s
< 0, s ∈ (sm, sM), (3.72)

where ϕ̂(s) = ϕ(s, . . . , s), then the symmetric equilibrium is unique.

The proof is similar to that of Proposition 3.2 and is therefore omitted. As in the

dual sourcing case, note that if the suppliers are symmetric, condition (3.72) instead

of (3.66) is needed for the uniqueness of the Nash equilibrium, because the first-order
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conditions for the two suppliers reduce to one equation (because of symmetry) which

has a unique solution, under (3.72).

If the suppliers decide to cooperate, then the optimal ordering policy of each

supplier in the team has the same structure as that under competition. Moreover,

the payoff of the team, denoted by Π(s), is the sum of the individual payoffs of the

suppliers, i.e.:

Π(s) =
∑
i

Πi(s) =
∑
i

πi(s)Gi(si). (3.73)

Assuming without loss of generality that the suppliers are numbered from 1 to n

so that G1(s
m
1 ) ≤ G2(s

m
2 ) ≤ · · · ≤ Gn(s

m
n ), the following theorem extends Theorem

3.4 to multiple suppliers.

Theorem 3.7. The optimal basestock level vector sc and the resulting maximum team

payoff Π(sc) satisfy:

(i) If G1(s
m
1 ) = G2(s

m
2 ) = · · · = Gn(s

m
n ), then

sci = smi , i = 1, 2, . . . , n, (3.74)

Π(sc) = Π(sm) = G1(s
m
1 ) = G2(s

m
2 ) = · · · = Gn(s

m
n ). (3.75)

(ii) If G1(s
m
1 ) < G2(s

m
2 ) < · · · < Gn(s

m
n ), then there exists an index k such that:

sci ∈ [0, smi ), i ≤ k and scj ∈ (smj , s
M
j ), j > k. (3.76)

G1(s
m
1 ) < Π(sm) < Π(sc) < Gn(s

c
n). (3.77)

In both cases:

Π(sc) > Π(se), (3.78)

where Π(se) =
∑

i Πi(s
e) is the sum of the payoffs of the n suppliers at equilibrium

under competition.

The proof is similar to that of Theorem 3.4 and is therefore omitted. Theorem 3.7

implies that if the condition in (i) holds, all the suppliers have the same myopic profit.
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In this case, any supplier moving away from his myopic basestock level hurts the

team’s profit. If the condition in (ii) holds, the customers are arranged in ascending

order of myopic profit. The suppliers with the k smallest myopic profits use active

basestock levels that are below their myopic basestock levels, ceding a part of their

demand shares to the remaining n− k suppliers who use active basestock levels that

are above their myopic basestock levels. Therefore, all suppliers sacrifice some of

their myopic profits to optimally balance their demand shares by transferring some

of the buyers’ business from the less profitable to the more profitable suppliers. The

total expected average profit of the suppliers at equilibrium, if one exists, is higher

than their team profit under cooperation, because under competition all suppliers use

active basestock levels which are above and far from their myopic basestock levels,

whereas under cooperation they use active basestock levels which, roughly speaking,

are closer to their myopic basestock levels.

The round-robin switching policy of the buyer that we considered in this section

is a particular policy that the buyer can use to stimulate competition on availabil-

ity among multiple suppliers, but there can be other policies. One such policy, for

example, is to let all the suppliers compete for the buyer’s business on their active

basestock levels without punishing them for failing to deliver on demand. Under such

a policy, every supplier will try to overbid the other suppliers. As every supplier i

incurs losses when his active basestock level is above sMi , the winning supplier will

be the supplier with the highest value of sMi . He will set his active basestock level

just above the second highest sMi value, and earn the supplier’s loyalty, driving all the

other suppliers out of the supplier’s business. Such an outcome may not be desirable

for the buyer.

To avoid this situation, an alternative policy is to let all the suppliers compete for

the buyer’s business on their active basestock levels, except for the supplier who failed

most recently. Under this variant, the winning supplier will again be the supplier with

the highest value of sMi unless he is the one who failed most recently. If this is the

case, the winning supplier will be the supplier with the second-highest value of sMi .

When that supplier fails, the supplier with the highest value of sMi will be eligible

for selection again and will win the buyer’s loyalty until he fails again. This cycle
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will be repeated between the buyers with the two highest values of sMi , and all other

suppliers will have been driven out of the buyer’s business, leaving the buyer in the

dual sourcing situation studied in the main part of this chapter.

The idea of banishing a supplier who fails for one supply run can be generalized

to banishing him for k supply runs, where k ∈ {0, . . . , n}. In this case, the switching

cycle will be repeated between the buyers with the k highest values of sMi , and all

other suppliers will have been driven out of the buyer’s business.

In the round-robin switching policy, k = n. Under this policy, when a supplier

fails to deliver on demand, the buyer punishes him by sending him to the bottom of

the list. This implies that the failed supplier will be selected again only after all the

other suppliers fail, one after the other, i.e., his turn will come up again after n − 1

stockouts. Therefore, sending a failed supplier at the bottom of the list makes sense

if the buyer wants to keep all the suppliers in business.

3.8 Discussion and future research

The behavior of an always-a-share buyer who plays her suppliers against each other

by rewarding availability with loyalty and punishing stockouts with switching has

significant implications for the suppliers’ inventory policy and long-run average profit.

The ordering decision of the supplier who enjoys the buyers’ loyalty requires the

careful balancing of his inventory and backorder costs against his future profit loss

resulting from ceding the buyer’s loyalty to his competitor(s). There are several

possible directions for future work.

In our model, we assume that the buyer backorders any unmet demand with the

supplier that she selects to meet the demand to ensure the uniformity and traceability

of her order. A different possibility is to presume that if the selected supplier runs

out of stock, the buyer tries to procure the missing items from the other supplier.

In this case, it may be in the interest of the suppliers to hold some spare inventory

even when they are inactive. This interest will be more intense if fully satisfying the

residual demand results in gaining the buyer’s loyalty in the next period.

A similar situation arises if the inactive supplier is not informed about the active
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supplier’s failure to serve the buyer. In this case, he must also hold some spare

inventory to meet the buyer’s demand if she calls on him without warning following

a stockout by the other supplier.

Another intelligence-related issue concerns the information that the suppliers know

about each other. In our model, we assume that each supplier knows the other sup-

plier’s cost and revenue parameters. In practice, these parameters can be unknown,

in which case the supplier will have to estimate them through learning. The same

holds for the buyer’s demand distribution.

Finally, we assume that the buyer is loyal to one supplier as long as he serves her

well but immediately switches to the other supplier after the first failure. If there

is friction associated with switching, the buyer may think twice before switching at

the first stockout incident. An alternative is to issue a warning to the supplier who

fails the first time providing him with another chance to stay active, but switch after

the second failure. In this case, the active supplier will use different active basestock

levels depending on whether he has been issued a warning or not. Intuitively, the

basestock level before the warning should be smaller than that after the warning, but

it would interesting to see how much smaller and also how both levels compare to the

active basestock level when switching occurs after the first failure.



Chapter 4

Dynamic ordering and buyer

selection policies in a newsvendor

setting with service-dependent

demand

4.1 Introduction

In this chapter, we study a newsvendor model of a firm that orders items for a group of

repeat buyers. The buyers generate different revenues and have different average visit

rates that depend on whether they are satisfied or dissatisfied with their last visit.

In Section 4.2, we formulate the dynamic ordering and buyer selection problem of

the firm. In Section 4.3, we determine the myopic policy and derive some important

structural results on the optimal policy. In Section 4.4, we fully characterize the

optimal policy for two buyers and compare it with other policies which form the basis

of heuristic policies for larger problems. In Section 4.5, we probe into the optimal

policy for more than two buyers by numerically solving and discussing a problem

instance with three buyers. In Section 4.6, we set up the Lagrangian relaxation of the

original problem. In Section 4.7, we develop three heuristic index policies for the buyer

selection problem based on the relaxed problem. For the Lagrangian index policy, we

89
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derive the “best” Lagrangian price in closed form as the solution to the Lagrangian

dual problem. In Section 4.8, we explore and compare the performance of the three

index policies by numerically solving a large number of problem instances with five

and ten buyers. For the five-buyer instances, we also compare the index policies with

the optimal policy. Finally, in Section 4.9, we summarize our findings and propose

directions for future work. Supplemental material for this chapter, including proofs,

can be found in Appendix C.

4.2 Model formulation

A firm supplies items to a finite set of buyers B = {1, 2, . . . , n} over consecutive

time periods. At the beginning of each period t, the firm orders a quantity yt ∈
B0 = {0, 1, . . . , n}, and at the end of the period, each buyer i (she) visits the firm

with a probability that depends on whether she is satisfied or not with her previous

visit. This probability is denoted by qi(αi,t), where αi,t ∈ {0, 1} is the satisfaction

state of buyer i at the beginning of period t, with 0 meaning dissatisfied and 1

meaning satisfied. We assume that every buyer that visits the firm demands one

item, and that satisfaction depends solely on item availability so that our results are

not overshadowed by the complexity of other influencing factors. We refer to qi(αi,t)

and its complement q̄i(αi,t) = 1− qi(αi,t) as the average visit rate and deferral rate of

buyer i, respectively, when in satisfaction state αi,t. The buyer’s demand is denoted

by di(αi,t). For notational simplicity, henceforth, we omit the dependence of qi and

di on αi,t, wherever possible. The demand di is Bernoulli distributed with:

P (di = 1) = qi = 1− P (di = 0) = 1− q̄i, i ∈ B.

We assume that the demands of different buyers are independent and that a

satisfied buyer is more likely to demand service than a dissatisfied buyer is, i.e.:

qi(1) ≥ qi(0) > 0, i ∈ B.
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For convenience, we define:

γi =
qi(1)− qi(0)

qi(1)
, i ∈ B (4.1)

γ̄i =
q̄i(0)− q̄i(1)

q̄i(1)
=
qi(1)− qi(0)

q̄i(1)
, i ∈ B. (4.2)

We refer to γi and γ̄i as the loss-of-visit-rate coefficient (LVC) and gain-of-deferral-

rate coefficient (GDC) of buyer i, respectively, when switching from the satisfied to

the dissatisfied state.

The total demand of all buyers for any subset of buyers A ⊆ B is denoted by DA,

i.e., DA =
∑

j∈A dj(αj). Random variable DA is the sum of nA = |A| independent
non-identical Bernoulli random variables, so it follows a Poisson binomial distribu-

tion Wang (1993). The p.m.f. and c.d.f. of DA are denoted by fA(k) and FA(y),

respectively, and are given by:

fA(k) =
∑

X∈[A]k

∏
j∈X

qj(αj)
∏

j∈A\X

q̄j(αj), k = 0, . . . , nA, (4.3)

FA(y) =

y∑
k=0

fA(k), y = 0, . . . , nA, (4.4)

where [A]k is the set of k-combinations of A. Computing fA(k) and FA(y) is compu-

tationally demanding even for modest values of nA, because |[A]k| = CnA
k can be very

large, particularly for k close to nA/2, where C
nA
k denotes the binomial coefficient.

In addition to DA, we also define the total demand of all buyers in A when they

are all satisfied, D1
A =

∑
j∈A dj(1). The p.m.f. and c.d.f. of D1

A are denoted by f 1
A(k)

and F 1
A(y), respectively, and are given by (4.3) and (4.4) for αj = 1.

In our analysis, we will focus on two special subsets of buyers. The first is denoted

by A(i) and contains the first i buyers after all buyers have been reordered in some

way so that (i) denotes the index of the ith buyer in the reordered set, i.e., A(i) =

{(1), (2), . . . , (i)}, i ∈ B. For this subset, nA(i)
= i and DA(i)

=
∑i

j=1 d(j)(α(j)). The

p.d.f. and c.d.f. of DA(i)
are given by (4.3) and (4.4) for A = A(i). For notational
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simplicity, DA(i)
, fA(i)

(k), and FA(i)
(y) are henceforth denoted by D(i), f(i)(k), and

F(i)(y), respectively. By convention, we define D(0) = 0, f(0)(0) = 1, and F(0)(·) = 0.

Note that D(n) is the total demand of all buyers.

The second subset is denoted by A−i and contains all buyers except i, i.e., A−i =

B \ {i}, i ∈ B. For this subset, nA−i
= n − 1 and DA−i

=
∑

j∈B\{i} dj(αj). The

p.d.f. and c.d.f. of DA−i
are given by (4.3) and (4.4) for A = A−i. For notational

simplicity, DA−i
, fA−i

(k), and FA−i
(y) are henceforth denoted by D−i, f−i(k), and

F−i(y), respectively.

Next, we define a component-wise ordering of satisfaction state vectors.

Definition 4.1. For two satisfaction state vectors α′ = (α′
1, . . . , α

′
n) and α = (α1, . . . ,

αn), if α
′
i ≥ αi, ∀i ∈ B, we say that α′ is greater than (or equal) to α and write

α′ ≥ α. If α′ ≥ α, the total demand in α′ is stochastically larger than the total

demand in α, denoted D(n)(α
′) ≥st D(n)(α).

After the demand is realized, the firm must select which buyers to serve. We refer

to buyers who visit the firm demanding an item as active and to those who do not visit

as inactive. We denote the buyer selection decision by ui,t ∈ {0, 1}, where 0 means

do not serve and 1 means serve buyer i. The vector of selection decisions is denoted

by ut = (u1,t, u2,t, . . . , un,t). For notational simplicity, henceforth, we drop the time

index t, wherever possible. Given order quantity y ∈ B0 and demand realization

d ∈ {0, 1}n, the action space U(y,d), representing the possible values of u, is defined

as:

U(y,d) =

{
u ∈ {0, 1}n : ui ≤ di, i ∈ B,

∑
i∈B

ui ≤ y

}
. (4.5)

The first inequality ensures that inactive buyers are not served. The second in-

equality is a capacity constraint which states that the number of buyers served cannot

exceed the order quantity y.

Active buyers become satisfied if served and dissatisfied if not served. Inactive

buyers remain in their previous satisfaction state. Mathematically, this is expressed

as:

αi,t+1 = φ(αi,t, di,t, ui,t), i ∈ B, (4.6)
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where φ is the satisfaction state transition function defined as:

φ(αi, di, ui) = ui + (1− di)αi, i ∈ B, (4.7)

and in vector form as:

Φ(α,d,u) = u+ (1− d) ◦α, (4.8)

where “◦” denotes the Hadamard product (component-wise multiplication).

The short-memory behavior of buyers that we assume is adopted in several models

that link demand to past service (e.g., Hall and Porteus (2000); Liu et al. (2007)).

In the B2B setting that we consider, it is supported by the finding in Dion and

Banting (1995) that multiple stockouts seem not to have serious consequences for

buyer loyalty, beyond that of the initial occurrence. This behavior is also consistent

with the peak-end rule, which suggests that the remembered utility from an experience

largely depends on its peak and its end Fredrickson and Kahneman (1993). It is

also compatible with the related concept of the binary bias, which is the persistent

tendency that people have to dichotomize evidence leading to binary perceptions—in

our case, satisfied vs. satisfied—Fisher and Keil (2018); Fisher, Newman and Dhar

(2018).

The firm pays an acquisition cost c per item ordered at the beginning of each

period and receives a revenue ri from each buyer i that it serves at the end of the

period, where ri > c, i ∈ B. Any unsold items have zero salvage value. Therefore,

the profit per period of the firm, denoted by g(y,u), is given by:

g(y,u) =
∑
i∈B

riui − cy. (4.9)

The model described above can also be used to represent a firm providing service

instead of goods to a group of buyers, e.g., a technical support company that each

day must decide the number of technicians on call to respond to requests for in-situ

technical support from its clients.

The decision problem of the firm in each period is to select y ∈ B0 and u ∈ U(y,d)
to maximize its long-run average expected profit, denoted by Πy,u. The optimality
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equation for this problem can be written as follows:

Π + V (α) = max
y∈B0

{
E
d

[
max

u∈U(y,d)
{g(y,u) + V (Φ(α,d,u))}

]}
, ∀α, (4.10)

where Π is the maximum average expected profit and V (α) is the optimal differential

profit function starting in α. Solving (4.10) in one go is practically impossible because

the optimal decisions y∗ and u∗ are sequential and interdependent, with y∗ depending

on α given u∗, and u∗ depending on α, y∗, and the realization of d. To unravel the

self-reference in (4.10), we can decompose it into the following two subproblems.

Subproblem A: Given ordering policy y = y(α) ∈ B0, find the optimal buyer

selection policy uy,∗ = u∗(α, y,d) by solving the following Dynamic Programming

(DP) problem:

Πy,∗ + V y,∗(α) = E
d

[
max

u∈U(y(α),d)
{g(y(α),u) + V y,∗(Φ(α,d,u))}

]
, ∀α, (4.11)

where superscript “y, ∗” indicates operation under the optimal buyer selection policy

for given ordering policy y = y(α).

Subproblem B: Given buyer selection policy u = u(α, y,d) ∈ U(y,d), find the

optimal ordering policy y∗,u = y∗(α|u) by solving the following DP:

Π∗,u + V ∗,u(α) = max
y∈B0

{
E
d
[g(y,u(α, y,d)) + V ∗,u(Φ(α,d,u(α, y,d)))]

}
, (4.12)

∀α, where superscript “∗,u” indicates operation under the optimal ordering policy

for given buyer selection policy u = u(α, y,d).

The optimal decisions y∗ and u∗ that solve (4.10) can be obtained by simultaneously

solving Subproblems A and B, i.e., y∗ and u∗ satisfy u∗ = uy∗,∗ = u∗(α, y∗,d) and

y∗ = y∗,u
∗
= y∗(α|u∗). Solving either of the two subproblems exactly, however, is gen-

erally infeasible; therefore, resorting to numerical methods, such as value iteration, is

the only viable option. Even so, numerically solving (4.11) becomes computationally

intractable as the number of buyers increases, due to the curse of dimensionality and

because the second constraint in (4.5) couples the selection decisions across buyers.
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The number of computations that must be performed in each value iteration as a

function of n, denoted by N(n), is:

N(n) = 2n
n∑

k=0

[
Cn

k

n∑
y=0

Ck
min(y,k)

]
,

where 2n is the number of satisfaction state vectors, Cn
k is the number of demand

vectors for which the total demand is equal to k, and Ck
min(y,k) is the number of

possible buyer selection decision vectors when the total demand is k and the or-

der quantity is y. Indicatively, the above formula for different values of n yields:

N(2) = 52, N(3) = 312, N(5) = 10, 336, N(7) = 337, 280, N(10) = 65.71 × 106,

N(15) = 478.24× 109, and N(25) = 28.44× 1018.

A special class of easy-to-implement buyer selection policies that will play an impor-

tant role in our analysis is the class of index policies. An index policy, denoted by

ux, is a feasible buyer selection policy that assigns to each buyer i an index, denoted

by xi, which is, in general, a function of α and y. The active buyers are served in

descending order of their indices until either the order quantity is exhausted or there

are no more active buyers to serve. A formal definition of ux follows.

Definition 4.2. Under index policy ux, the buyer selection decision, denoted by

ux(i)(α, y,d), i ∈ B, is given by:

ux(i)(α, y,d) = d(i)1{D(i−1)≤(y−1)+}, α ∈ {0, 1}n, y ∈ B0, i ∈ B,

where (i) indexes the buyer with the ith highest index, i.e.,

x(1) ≥ x(2) ≥ · · · ≥ x(n).

As was mentioned earlier, the optimal buyer selection policy u∗ depends in general

on α, y, and the realization of d. This means that for the same α and y but different

realizations of d, the order in which buyers are served may differ, as has been verified

by our numerical experiments. Under an index policy ux, for the same α and y,

buyers are always served in the same order for any realization of d. In other words, the
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indices are computed before the demand (ex-ante) but are applied after the demand

(ex-post). Thus, index policies are suboptimal in general.

Indices can have varying degrees of sophistication. An index that depends only on

the parameters and/or satisfaction state of the buyer to which it pertains is referred

to as uncoupled. An index that also depends on y is referred to as weakly coupled,

whereas an index that depends on the parameters and/or satisfaction states of all

buyers is called strongly coupled. The simplest uncoupled index is the revenue rate ri,

which leads to a revenue-greedy (or margin-greedy since the order cost c is uniform)

buyer selection policy.

4.3 On the optimal policy

This section characterizes the optimal policy for the single-period problem (myopic

policy) and provides some properties and conjectures on the optimal policy for the

infinite-horizon problem.

4.3.1 Myopic policy

The single-period problem is a newsvendor problem where the newsvendor sells items

to n heterogeneous buyers with independent, non-identical Bernoulli demands and

different revenue rates. The optimal ordering and buyer selection policy for this

problem is henceforth referred to as myopic policy, and the resulting myopic expected

profit function is given by the following theorem.

Theorem 4.1. The myopic buyer selection policy for any order quantity y ∈ B0 is

an index policy ur with index ri, i ∈ B. The resulting myopic expected profit, denoted

by G(y), is:

G(y) =

y∑
i=1

q(i)r(i) +
n∑

i=y+1

F(i−1)(y − 1)q(i)r(i) − cy, y ∈ B0, (4.13)
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where (i) indexes the buyer with the ith highest revenue rate, i.e.:

r(1) ≥ r(2) ≥ · · · ≥ r(n). (4.14)

Function G(·) is concave in y, and the myopic ordering policy, denoted by ym, is given

by:

ym = arg min
y∈B0\{n}

{
n∑

i=y+1

f(i−1)(y)q(i)r(i) ≤ c

}
. (4.15)

If there is no y satisfying (4.15) then ym = n.

The proof is in Appendix A. Theorem 4.1 states that the myopic buyer selection

policy is revenue-greedy and the myopic ordering policy is newsvendor-type. As was

already mentioned in Section 4.2, computing f(i)(y) is not straightforward. Approx-

imation methods such as the Poisson and normal approximations have been used

in the literature, and Hong (2013) has derived an exact formula with a closed-form

expression for the c.d.f. of the Poisson binomial distribution.

Corollary 4.1. The quantity ym is bounded as follows:

F−1
(n)

(
r(n) − c

c

)
≤ ym ≤ F−1

(n)

(
r(1) − c

c

)
. (4.16)

The proof is similar to that of Proposition 2 in Sen and Zhang (1999) and hence

is omitted. In all the above expressions, we have suppressed the dependence on α

for notational simplicity. In fact, ym depends on α because q(i) and f(i) in (4.15) are

functions of α(i) and (α(1), . . . , α(i−1)), respectively. The following proposition states

an important property of ym(α).

Proposition 4.1. If α′ ≥ α, then ym(α′) ≥ ym(α).

The proof is in Appendix A. Proposition 4.1 states that the greater the satisfaction

state vector, the larger the myopic order quantity. Proposition 4.1 and constraint

(4.16) are useful in reducing the search space of the optimal order quantity, which

can be computationally demanding for large n, given the exponential growth of the

state space (2n) and the computational complexity of evaluating f and F , as was
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mentioned earlier. We caution that the concavity of G(y) stated in Proposition 4.1

holds only under the optimal buyer selection policy. That is if the firm does not use

the revenue-greedy policy to select buyers, G(y) may not be concave, and ym(α) may

not be non-decreasing in α.

4.3.2 Properties of the optimal policy

The myopic policy is appealing because it is simple and focuses on short-term revenue

and hence profit. However, it is suboptimal and can be arbitrarily bad for the infinite-

horizon problem because it ignores the effect of decisions on buyer satisfaction and

future demand. Nevertheless, the monotonicity property of the myopic order quantity

stated in Proposition 4.1 is fundamental and should hold beyond the confines of the

single-period problem. This intuition is supported by the following proposition.

Proposition 4.2. If α′ ≥ α, then V (α′) ≥ V (α).

The proof is in Appendix A. It is based on the sample-path argument that the firm

will perform better if it starts from state α′ and follows the optimal policy starting

from α, than if it starts from α. Proposition 4.2 suggests the following analog to

Proposition 4.1 for the infinite-horizon problem.

Conjecture 1. If α′ ≥ α, then y∗(α′) ≥ y∗(α).

Conjecture 1 is based on the fact that α′ ≥ α implies D(n)(α
′) ≥st D(n)(α) by

Definition 4.1. The claim is that by ordering at least as many items in state α′ as

in state α, the firm can reap a higher revenue and avoid dissatisfying buyers who

are more likely to be active in α′ than they are in α. In the case of homogeneous

buyers, where selection is not an issue, Deng et al. (2014) proves this monotonicity

property by approximating the value function with a linear function in the number of

satisfied buyers, since this approximation is exact for infinite buyers. If the buyers are

heterogeneous, the problem is more complicated, due to the buyer selection decision.

In this case, the monotonicity property makes sense only under the optimal selection

policy, as was also the case with Proposition 4.1. Conjecture 1 is verified in all our

numerical examples with three or more buyers and is proved for two buyers in Section
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4.4.1. In Section 4.4.2, we provide a numerical counterexample with two buyers where

the firm does not use the optimal selection policy and Conjecture 1 does not hold.

When considering the long-term problem, the firm must balance the current rev-

enue from the satisfied buyers against the loss in future demand from the dissatisfied

customers. The fact that the buyers have short memory suggests that the optimal

selection should depend more on how decisions affect the near future than on how

they affect the distant future. Intuitively, between two policies leading to different

satisfaction state vectors, the policy that leads to the state where the total demand

is stochastically larger should be preferable as far as the long-term average expected

profit of the firm is concerned.

The following proposition states that for any two active buyers i and j competing

for one item, if i has higher LVC and GDC than j, meaning that i is more reactive

than j to quality-of-service changes, prioritizing i over j leads to a satisfaction state

vector in which the total demand of both buyers is stochastically larger than the

respective demand in the state vector led to by prioritizing j over i.

Proposition 4.3. For any two active buyers i, j ∈ B, i ̸= j, if γi ≥ γj and γ̄i ≥ γ̄j,

then di(1) + dj(0) ≥st di(0) + dj(1).

The proof is in Appendix A. It is trivial to show that γi ≥ γj and qi(1) ≥ qj(1)

imply γ̄i ≥ γ̄j; that is, if buyer i has a higher LVC and visits the firm more frequently

when she is satisfied than j does, then i also has a higher GDC than j. Therefore,

prioritizing i over j leads to a greater satisfaction state vector. If, in addition to

being more reactive to service changes, i also has a higher revenue rate than j, then

intuitively the firm is better off prioritizing i over j. This intuition is expressed in

the following conjecture.

Conjecture 2. For any two active buyers i, j ∈ B, i ̸= j, if ri ≥ rj, γi ≥ γj, and

γ̄i ≥ γ̄j, then u
∗
i ≥ u∗j .

Conjecture 2 is a useful rule of thumb for businesses where the higher the revenue

rate of a buyer, the more important the buyer, the higher her service expectations,

and therefore the higher her LVC and GDC. For cases where the more frequent the
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buyer, the lower the price (revenue rate) she pays to the firm, conditions of Conjecture

2 do not hold, and buyer selection becomes more obscure.

In general, the optimal selection policy is not an index policy and cannot be

obtained in closed form. We can only track it down for special cases, hoping to gain

some intuition that can lead us to develop good heuristics. The following proposition

characterizes the optimal selection policy for the special case where the firm uses a

fixed order quantity (FOQ) policy with FOQ equal to n− 1.

Proposition 4.4. If y(α) = n − 1, ∀α, the optimal buyer selection policy u∗ is an

index policy uz with index for buyer i given by:

zi =
ri

1− γiF 1
−i(n− 2)

, i ∈ B, (4.17)

The resulting maximum average expected profit, denoted by Πn−1,∗, is:

Πn−1,∗ = R−Rj − (n− 1)c, (4.18)

where R and Rj are given below:

R =
∑
k∈B

qk(1)rk, (4.19)

Rj =
∏
k∈B

qk(1)zj, where j = argmin
k∈B

(zk). (4.20)

The proof is in Appendix A. It is based on recognizing that if y(α) = n− 1, ∀α,

buyer selection matters only when all buyers are active. In this case, the question

is not who should be selected, but who should be assigned the lowest priority and

be left out. If buyer j has the lowest priority, she will become dissatisfied, and all

other buyers will be satisfied. Thereafter, j will not contribute to the firm’s revenue

until she becomes satisfied. For this to happen, the total demand of the other n− 1

buyers must not exceed n − 2. The term R − Rj in (4.18) expresses the difference

between the total expected revenue of the firm if all buyers are always served, and

the lost revenue from buyer j every time she is not served—although active—because



4.3. ON THE OPTIMAL POLICY 101

all other buyers are also active and j has the lowest priority.

From (4.17), zi is an increasing function of three terms: ri, γi, and F 1
−i(n − 2).

The first term is the revenue from buyer i, if buyer i is served. The second is the loss

in the future demand of buyer i, if buyer i is not served. Both terms refer to buyer

i’s parameters. The last term is the type-I service level of all other buyers when they

are satisfied, if buyer i is served, i.e., it is the probability that the total demand of

the other n − 1 buyers is at most n − 2. From (4.3) and (4.4), this probability is

equal to 1−
∏

k∈B\{i} qk(1). This term couples the demand of buyer i to the demand

of all other buyers. Note that if qi(1) > qj(1), then F 1
−i(n − 2) > F 1

−j(n − 2), for

i ̸= j. This means that by favoring a buyer with a higher qi(1), the firm reduces

the probability of stockout for the other buyers, thus increasing the chance of the

low-priority buyer being satisfied and contributing to profit. Proposition 4.4 leads to

the following property.

Corollary 4.2. If ri ≥ rj, γi ≥ γj, and γ̄i ≥ γ̄j, then zi ≥ zj, i ̸= j.

Corollary 4.2 confirms Conjecture 2 when y(α) = n− 1, ∀α. Note that the three

conditions that it sets are sufficient. This means that it is possible that zi ≥ zj even

if not all these conditions are met. From (4.17), the necessary condition for zi ≥ zj

is ri[1− γj(1− qi(1)Q)] > rj[1− γi(1− qj(1)Q)], where Q =
∏

k∈B\{i,j} qk(1).

Index zi depends on the parameters of buyer i, the order quantity n − 1, and

the visit rates of all other buyers. It is therefore strongly coupled. As n → ∞,

F 1
−i(n− 2) → 0, so the limit of zi as n→ ∞, denoted by si, becomes:

si = lim
n→∞

zi =
ri

1− γi
, i ∈ B. (4.21)

Index si augments the revenue rate ri by a factor of 1/(1 − γi). Unlike zi which

depends on the visit rates of all buyers, si depends on the parameters of buyer i

only, so it is uncoupled, like ri. Therefore, increasing the number of buyers decreases

the coupling between them. Unlike ri which is myopic, si is far-sighted because it

accounts for the loss in future demand. We refer to si as the augmented revenue rate

and to the index policy that results from using si as the augmented-revenue-greedy

policy us.
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4.4 The two-buyer problem

In this section, we characterize the optimal ordering and buyer selection policy for two

buyers, and we analyze and compare the performance of any arbitrary index policy

to that of the optimal selection policy.

4.4.1 Optimal policy

From Proposition 4.4, the optimal selection policy for two buyers, under the FOQ

policy y(α) = 1, ∀α, is uz, where zi given by (4.17) for n = 2. The following theorem

states that the optimal ordering policy for two buyers is an FOQ policy, so when the

optimal FOQ is 1, the optimal selection policy is uz; otherwise (when the optimal

FOQ is 0 or 2), buyer selection is not an issue.

Theorem 4.2. For n = 2 (B = {1, 2}):

(a) The optimal buyer selection policy u∗ is an index policy uz, with index for buyer

i given by:

zi =
ri

1− γiq̄j(1)
=

ri
1− βiq̄i(1)q̄j(1)

, i ∈ B, (4.22)

where

βi = γi + γ̄i =
qi(1)− qi(0)

qi(1)q̄i(1)
, i ∈ B. (4.23)

(b) The optimal ordering policy y∗ is an FOQ policy. Assuming without loss generality

that zi > zj, i ̸= j, the optimal FOQ, denoted by yz, and the resulting maximum

average expected profit Π are given in Table 4.1, where R and Rj are defined in

(4.19) and (4.20).

Table 4.1: Optimal FOQ and resulting average expected profit for zi > zj, i ̸= j, and
n = 2.

Region Condition yz Π
Y0 Rj > R− c 0 0
Y1i Rj < min(R− c, c) 1 R−Rj − c
Y2 Rj > c 2 R− 2c
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The proof is in Appendix A. The first expression for zi in (4.22) is the same as

the expression in (4.17) for n = 2, after noting that q̄j(1) = F 1
−i(0); therefore, it

has the same interpretation as that expression. The second expression allows for a

different interpretation. It implies that zi is increasing in ri and βi, where βi is the

ratio of the drop of supplier i’s visit rate if she is active but not served, qi(1)− qi(0),

to the variance of her demand when she is satisfied, qi(1)q̄i(1) (note that qi(1)q̄i(1)

is maximized at qi(1) = 0.5). Therefore, prioritizing the buyers based on βi implies

favoring a buyer who is more reactive to quality-of-service changes and has a more

predictable visit behavior when satisfied.

Theorem 4.2 (b) confirms Conjecture 1. The conditions in Table 4.1 under which

each FOQ value is optimal when zi > zj, have the form of inequalities involving

the expected revenues R and Rj defined in (4.19) and (4.20), respectively. These

conditions partition the (zi, zj, R,Rj) space into three regions, denoted Y0, Y1i, and

Y2, where yz = 0, 1, and 2, respectively. The conditions imply that region Y1i

borders with Y0 and Y2, but Y0 and Y2 do not share a border. The interpretation of

the optimal FOQ policy is simple and intuitive. If Π0,uz
> Π1,uz

, then yz = 0 (region

Y0). If Π2,uz
> Π1,uz

, then yz = 2 (region Y2). Otherwise, yz = 1 (region Y1i).

Figure 4.1 displays graphs of two indicative problem instances with different sets of

visit and deferral rates, showing the regions, projected onto the (r1, r2) space, where

each FOQ value is optimal, under uz. In both instances, c = 1. Note that in region

𝑟𝑟2 𝑟𝑟2

Y0

Y12

Y11

Y2

Y0

Optimal policy

Y12 Y2

Y11

𝑟𝑟1 𝑟𝑟1
𝑞𝑞1 0 = 0.05, 𝑞𝑞1 1 = 0.5
𝑞𝑞2 0 = 0.1, 𝑞𝑞2 1 = 0.4

𝑞𝑞1 0 = 0.35, 𝑞𝑞1 1 = 0.45
𝑞𝑞2 0 = 0.1, 𝑞𝑞2 1 = 0.7

Figure 4.1: Optimal FOQ policy under the optimal index policy uz for n = 2 (c = 1).
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Y11, z1 > z2, whereas in region Y12, z2 > z1. In the left graph, β1 > β2, so region

Y11 covers a part of the space between the lines z1 = z2 and r1 = r2, where buyer 1

has priority over 2 (because z1 > z2) even though r1 < r2. The reverse is true in the

right graph, where region Y12 covers a part of the space where r1 > r2.

4.4.2 Effect of the index on the optimal FOQ and the average

expected profit

In the previous section, we saw that for two buyers, the optimal buyer selection

policy is index policy uz and the optimal ordering policy is FOQ policy yz. In this

section, we examine how the performance of an arbitrary index policy ux compares

to that of uz and what the resulting optimal FOQ, yx, is. This investigation is of

interest because the result for n = 2 can be an indication of the outcome for n > 2,

where the optimal policy is not tractable and different heuristic index policies may be

considered. For two buyers, when yz = 0 or 2, buyer priority is irrelevant; therefore,

Table 4.2: Optimal FOQ and resulting average expected profit under ux; difference
in average expected profit under uz and ux when yz = 1, for xi > xj, zi < zj, i ̸= j,
and n = 2.

Region Condition yx Area Π∗,ux
Π− Π∗,ux

Y0 Ri < R− c < min(Rj, c) 0 Blue 0 R−Ri − c
Y1i Ri < Rj < min(R− c, c) 1 Gray R−Rj − c Rj −Ri

Y2 Ri < c < Rj and R > 2c 2 Red R− 2c c−Ri

ux has the same optimal FOQ and average expected profit as uz, i.e., yx = yz and

Π∗,ux
= Π. Policies ux and uz differ only when yz = 1 and the two policies prioritize

buyers in the reverse order. In this case, yx may be either 0, 1, or 2, and Π∗,ux
< Π.

Table 4.2 displays yx, Π∗,ux
, and Π − Π∗,ux

when yz = 1 and ux and uz prioritize

buyers in the reverse order.

Two index policies that are of particular interest are ur and us because they

capture key buyer attributes (profitability and reactiveness) and arise in Lagrangian

relaxation approximations of the original problem, as we will see in Section 4.7.

Figures 4.2 and 4.3 display graphs for the same problem instances as those in
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𝑟𝑟1 𝑟𝑟1

Revenue-greedy policy

𝑟𝑟2 𝑟𝑟2

𝑞𝑞1 0 = 0.05, 𝑞𝑞1 1 = 0.5
𝑞𝑞2 0 = 0.1, 𝑞𝑞2 1 = 0.4

𝑞𝑞1 0 = 0.35, 𝑞𝑞1 1 = 0.45
𝑞𝑞2 0 = 0.1, 𝑞𝑞2 1 = 0.7

Y0

Y12 Y2

Y11

Y11

Y2

Y0

Y12

Figure 4.2: Optimal FOQ policy under index policy ur for n = 2 (c = 1).
r/ρ policy

𝑟𝑟1 𝑟𝑟1
𝑞𝑞1 0 = 0.05, 𝑞𝑞1 1 = 0.5
𝑞𝑞2 0 = 0.1, 𝑞𝑞2 1 = 0.4

𝑞𝑞1 0 = 0.35, 𝑞𝑞1 1 = 0.45
𝑞𝑞2 0 = 0.1, 𝑞𝑞2 1 = 0.7

𝑟𝑟2 𝑟𝑟2

Y0

Y12

Y11

Y2

Y0

Y12 Y2

Y11

Figure 4.3: Optimal FOQ policy under index policy us for n = 2 (c = 1).

Figure 4.1, showing the regions, projected onto the (r1, r2) space, where different

FOQ values are optimal under ux, for x = r and x = s, respectively. Note that in

the right graph of both figures, regions Y0 and Y2 share a border, whereas under uz

in Figure 4.1, these regions do not communicate, as was pointed out earlier.

In both figures, the areas where uz outperforms ux are shown in color, as defined in

Table 4.2. These areas cover a strip between the lines z1 = z2 and x1 = x2 (r1 = r2 in

Figure 4.2 and s1 = s2 in Figure 4.3) where ux and uz prioritize buyers in the reverse

order and yz = 1. In both figures, the areas where uz outperforms ux are shown in

color, as defined in Table 4.2. These areas cover a strip between the lines z1 = z2 and

x1 = x2 (r1 = r2 in Figure 4.2 and s1 = s2 in Figure 4.3) where ux and uz prioritize
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buyers in the reverse order and yz = 1. As a result of the suboptimality of ux, the

firm is unable to make a profit in the blue area, so it orders nothing (yx = 0), while

in the red area, it keeps both buyers satisfied at all times by overstocking (yx = 2).

This demonstrates how the selection policy can affect the optimal ordering policy. In

the gray area, the firm uses the right FOQ (yx = 1) but selects the wrong buyer.

In the above analysis, we restricted our search for the optimal ordering policy

to FOQ policies. In the proof of Theorem 4.2, we show that the invariance of the

optimal order quantity arises from the monotonicity property of y(α) which holds only

under the optimal index policy uz. That is, if a suboptimal index policy ux ̸= uz

is used, then α′ ≥ α does not imply that yx(α′) ≥ yx(α), and therefore yx(α) is

not necessarily fixed. We explain this counterintuitive behavior with an example.

Consider a problem instance with c = 1, r1 = 1.1, r2 = 1.05, q1(1) = 0.2, q1(0) = 0.1,

q2(1) = 0.98, and q2(0) = 0.8. Note that r1 > r2, γ1 = 0.5 > 0.184 = γ2, and

γ̄1 = 0.125 < 9 = γ̄2. Suppose the firm uses the revenue-greedy policy ur, which

means that it prioritizes buyer 1. Numerically solving problem (4.12) under ur, yields

the optimal ordering policy yr(α) shown for each state α = (α1, α2) in the transition

state diagram in Figure 4.4. The components qi(αi) of each transition probability

appear in green or red color depending on whether active buyer i is selected or is left

out of service, respectively, in the corresponding transition. The components q̄i(αi)

of inactive buyers appear in black. Self-transitions are omitted.

𝑞𝑞1(1)𝑞𝑞2(1)

0,0

1,0

0,1

1,1

𝑞𝑞1(1)

�𝑞𝑞1(0)𝑞𝑞2(0) 𝑞𝑞1(0)�𝑞𝑞2(1)

𝑦𝑦𝑟𝑟(1,1) = 1

𝑦𝑦𝑟𝑟(1,0) = 0

𝑦𝑦𝑟𝑟(0,1) = 1

𝑦𝑦𝑟𝑟(0,0) = 1 𝑞𝑞1(0)𝑞𝑞2(1)𝑞𝑞1(0)

Figure 4.4: State transition diagram (omitting self-transitions) corresponding to the
optimal ordering policy yr(α) under the revenue-greedy policy ur, for a two-buyer
example with r1 > r2, γ1 > γ2, and γ̄1 < γ̄2.
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4.5 Current revenue vs. loss in future demand

In the previous section, we presented the optimal ordering and buyer selection policy

for two buyers. Generalizing this analysis to more buyers, however, is impossible.

To gain insight into the optimal policy for more than two buyers, in this section, we

analyze the optimal policy for an example with three buyers, which we compute by

numerically solving the optimality equation (4.10).

The parameters of the example are: B = {1, 2, 3}, c = 1, r1 = 1.3, r2 = 1.25, r3 =

1.2, q1(1) = q2(1) = 0.66, q1(0) = q2(0) = 0.33, q3(1) = 0.93, and q3(0) = 0.46. Note

that r1 > r2 > r3 and, from (4.1) and (4.2), γ1 = γ2 = γ3 = 0.5 and γ̄1 = γ̄2 = 1 < 7 =

γ̄3. Figure 4.5 shows the state transition diagram corresponding to the optimal policy.

The values of the optimal ordering policy y∗(α) and the maximum average expected

profit, denoted by G∗(α), computed as G∗(α) =
∑

i∈{1,2,3} riEd[u
∗
i (α, y

∗(α),d)] −
cy(α), are shown next to each state α = (α1, α2, α3). The optimal buyer selection

policy u∗(α, y∗(α),d) is implied by the transition probabilities. As in Figure 4.4, each

component qi of each transition probability appears in green or red color depending on

whether active buyer i is selected or is left out of service in the respective transition.

For notational simplicity, the dependence of y∗ and G∗ on α and of qi on αi is

omitted. From Figure 4.5, we observe that y∗(α) = 1,α ̸= (1, 1, 1), and y∗(1, 1, 1) =

2, confirming Conjecture 1. We also observe that buyer 1 is always prioritized over

buyer 2, because both buyers have the same visit rates, and hence the same LVC and

GDC, but r1 > r2. In general, however, u∗ depends on α, y, and the realization of

d; therefore, it is not an index policy. More specifically, if the ending state after d is

realized is one where two buyers are satisfied and one buyer is dissatisfied, henceforth

referred to as a good state, the optimal selection policy is revenue-greedy and hence

myopic. This means that the firm opts for state (1, 1, 0) then (1, 0, 1) and lastly

(0, 1, 1), despite the fact that G∗(0, 1, 1) > G∗(1, 0, 1) > G∗(1, 1, 0). The transitions

that lead to states (1, 1, 0) and (1, 0, 1) are indicated with blue arrows. On the other

hand, if the ending state is one where one buyer is satisfied and two buyers are

dissatisfied, henceforth referred to as a bad state, the optimal selection policy is γ̄i-

greedy and hence far-sighted. This means that the firm opts for state (0, 0, 1) and
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1,1,1

1,1,00,1,1

0,0,1 1,0,0

1,0,1
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𝑦𝑦∗ = 2

𝐺𝐺∗ = 0.186
𝑦𝑦∗ = 1

𝐺𝐺∗ = 0.196
𝑦𝑦∗ = 1
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𝐺𝐺∗ = 0.009
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𝑦𝑦∗ = 1

𝑞𝑞1𝑞𝑞3

𝑞𝑞1�𝑞𝑞2𝑞𝑞3

�𝑞𝑞 1
𝑞𝑞 2
�𝑞𝑞 3

Figure 4.5: State transition diagram (omitting self-transitions) corresponding to the
optimal ordering and buyer selection policy, y∗ and u∗, for a three-buyer example
with r1 > r2 > r3, γ1 = γ2 = γ3 and γ̄1 = γ̄2 < γ̄3.

then states (1, 0, 0) and (0, 1, 0). The transitions into state (0, 0, 1) are indicated with

orange arrows. If the only option is between the last two states, then the firm opts

for (1, 0, 0) because it always prioritizes buyer 1 over 2, as was mentioned earlier.

The sole transition into state (1, 0, 0) is indicated with a green arrow. States (0, 1, 0)

and (0, 0, 0) are transient and hence omitted. To better understand how the optimal

selection policy works, consider the situation where the initial state is (1, 0, 1). If

buyers 2 and 3 are active and 1 is inactive, the firm will end up in a good state, no

matter which buyer it selects. Under this demand scenario, the firm uses a revenue-

greedy policy seeking to maximize the current revenue, so it selects buyer 2 over 3

and ends up in state (1, 1, 0). If, on the other hand, buyers 1 and 3 are active and

buyer 2 is inactive, the firm will end up in a bad state, no matter which buyer it

selects. In this scenario, the firm uses a γ̄i-greedy policy seeking to maximize future

demand, so it selects buyer 3 over 1 and ends up in state (0, 0, 1).
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4.6 Lagrangian relaxation

As was mentioned at the end of Section 4.2, to solve the optimality equation (4.10),

we can decompose it into two subproblems: Subproblem A given by (4.11) and Sub-

problem B given by (4.12). Solving Subproblem A exactly is intractable because of

capacity constraint (4.5) which couples the selection decisions across buyers. If it

were not for this constraint, each buyer could be analyzed independently. As a re-

sult, Subproblem A fits the definition of a weakly coupled DP problem Adelman and

Mersereau (2013); Bertsimas and Mǐsić (2016) and is amenable to decomposition via

relaxation.

In this section, we consider a Lagrangian relaxation of (4.11) that is obtained by

relaxing the coupling constraint (4.5) and adding the penalty term λ
(
y(α)−

∑
i∈B ui

)
to the objective function, where λ ≥ 0 is the Lagrange multiplier or penalty price for

violating (4.5). After rearranging terms, the relaxed problem becomes:

Π̂y,λ+V̂ λ(α) = E
d

[
max
u∈U(d)

{∑
i∈B

(ri − λ)ui + V̂ λ(Φ(α,d,u))

}]
+(λ− c) y(α), (4.24)

U(d) = {u ∈ {0, 1}n : ui ≤ di, i ∈ B} .

The term λ
(
y(α)−

∑
i∈B ui

)
that has been added to (4.11) is non-negative for

policies satisfying (4.5). This implies that Πy,∗ ≤ Π̂y,λ, and hence Π̂y,λ is an upper

bound for Πy,∗. Note that Π̂y,λ depends on y(α) because of the last term in the r.h.s.

of (4.24). To remove this dependence, we define:

Π̂λ = Π̂y,λ − (λ− c) y(α), (4.25)

so that (4.24) can be written as:

Π̂λ + V̂ λ(α) = E
d

[
max
u∈U(d)

{∑
i∈B

(ri − λ)ui + V̂ λ(Φ(α,d,u))

}]
, ∀α. (4.26)

The advantage of Lagrangian relaxation is that for any fixed λ, DP (4.26) can
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be decomposed into the sum of n buyer-specific DP problems that can be solved

independently, as stated in the following Proposition.

Proposition 4.5. For any y(α) > 0, α ∈ {0, 1}n, and λ ≥ 0:

V̂ λ(α) =
∑
i∈B

V̂ λ
i (αi), (4.27)

Π̂λ =
∑
i∈B

Π̂λ
i , (4.28)

where V̂ λ
i (αi) and Π̂λ

i solve the following buyer-specific DP:

Π̂λ
i + V̂ λ

i (αi) = E
di

[
max

ui∈Ui(di)

{
(ri − λ)ui + V̂ λ

i (ui + (1− di)αi)
}]

, i ∈ B, (4.29)

Ui(di) = {ui ∈ {0, 1} : ui ≤ di} , i ∈ B.

The proof is in Appendix A. The first term in the maximization of (4.29) is the

revenue generated by buyer i when she is active. It is non-negative if ri ≥ λ and

negative if ri < λ, leading to a simple solution provided by the following proposition.

Proposition 4.6. The solution of (4.29), denoted by uλi (di), i ∈ B, is given by:

uλi (di) = di1{ri≥λ}, i ∈ B. (4.30)

V̂ λ
i (1) = (ri − λ)+

γi
1− γi

, V̂ λ
i (0) = 0, i ∈ B, (4.31)

Π̂λ
i = (ri − λ)+qi(1), i ∈ B. (4.32)

The proof is in Appendix A. The optimal buyer selection policy given by (4.30)

depends on the choice of the Lagrange multiplier λ. As was mentioned earlier, Π̂y,λ is

an upper bound for Πy,∗. To obtain the tightest bound, we must solve the Lagrangian

dual problem Topaloglu (2009); Brown and Smith (2020):

min
λ≥0

Π̂y,λ. (4.33)
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Proposition 4.7. The solution of (4.33) is:

λ∗ = r(i∗), where i∗ = arg max
i=1,...,n+1

{
y(α) ≥

i−1∑
k=1

q(k)(1)

}
, (4.34)

where (i) indicates the index of the buyer with the ith highest revenue rate, and by

convention r(n+1) = 0.

The proof is in Appendix A. Expression (4.34) implies that λ∗ is the (i∗)th highest

revenue rate, where i∗ is the first buyer whose demand is not covered by y(α) if the

firm prioritizes buyers in descending order of their revenue rates and replaces their

demands by their expected value in the satisfied state. Figure 4.6 displays a graph of

λ∗ vs. y(α). If y(α) =
∑i−1

k=1 q(k)(1), for some i, then λ∗ ∈ [r(i), r(i−1)]. In this case,

to break the tie, we set λ∗ = r(i).
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Figure 4.6: Optimal Lagrange multiplier λ∗ vs. y(α).

4.7 Index policies

The buyer selection policy given by (4.30) is not feasible because it violates the

linking constraint (4.5) when
∑

i∈B di1{ri≥λ} > y(α). In this section, we consider

three heuristic index policies that respect constraint (4.5). Following Brown and

Smith (2020), the index in each policy approximates the value added to the firm by
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selecting buyer i when she is active, given by:

vi = ri +Wi(1)−Wi(0), i ∈ B, (4.35)

whereWi(αi) is some buyer-specific approximation of the value function, e.g., V̂ λ
i (αi).

4.7.1 Whittle index policy

The first index policy that we consider is the Whittle index policy, where Wi(αi) is

the value function V̂ λ
i (αi) in (4.29), for a given buyer-specific Lagrange multiplier

λ = wi. The Whittle index is the value of wi which, if given to the firm as a subsidy,

makes it indifferent between selecting vs. not selecting buyer i Whittle (1988). From

(4.35), wi satisfies:

wi = ri + V̂ wi
i (1)− V̂ wi

i (0), i ∈ B.

Substituting V̂ wi
i (1) and V̂ wi

i (0) from (4.31) into the above expression yields:

wi = ri + (ri − wi)
+ γi
1− γi

, i ∈ B.

The solution of the above equation is:

wi = ri, i ∈ B. (4.36)

Therefore, the Whittle index of buyer i is ri, and the Whittle index policy coincides

with the revenue-greedy policy, as is also shown in Adelman and Mersereau (2013) in

a similar setting.

4.7.2 Lagrangian index policy

The second index policy that we consider is the Lagrangian index policy, whereWi(αi)

is the value function V̂ λ
i (αi) in (4.29) for a given Lagrange multiplier λ which is

common for all buyers Brown and Smith (2020). From (4.35), the Lagrangian index,
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denoted by li satisfies:

li = ri + V̂ λ
i (1)− V̂ λ

i (0), i ∈ B.

Substituting V̂ λ
i (1) and V̂

λ
i (0) from (4.31) yields:

li = ri + (ri − λ)+
γi

1− γi
, i ∈ B. (4.37)

The above index can also be viewed as a greedy index w.r.t. V̂ λ
i (αi) that is derived

by solving the following optimization problem Adelman and Mersereau (2013):

E
d

[
max

u∈U(y(α),d)

{∑
i∈B

riui + V̂ λ
i (ui + (1− di)αi)

}]
.

The above problem is equivalent to a 0-1 knapsack problem that is solved by

selecting buyers in descending order of indices li given by (4.37). Although we can

use any Lagrange multiplier λ in (4.37), we expect that values leading to tighter

performance bounds result in better approximate value functions and generate better

heuristics. For this reason, we use the optimal multiplier λ∗ from (4.34) to obtain the

optimal Lagrangian index:

l∗(i) = r(i) + (r(i) − r(i∗))
+ γi
1− γi

, i ∈ B, (4.38)

where (i) indicates the index of the buyer with the ith highest revenue rate. Based on

(4.38), the buyers are divided into two groups: those with the i∗ − 1 highest revenue

rates and those with the n− i∗ +1 lowest revenue rates. The index for each buyer in

the first group depends on her goodwill and is constructed by augmenting her revenue

rate r(i) by a term that is proportional to r(i) − r(i∗) and γ(i)/(1− γ(i)). The index for

each buyer in the second group is r(i). Note that l∗(i) depends on y(α), because from

(4.34), i∗ depends on y(α); therefore, it is weakly coupled. Figure 4.7 shows a plot

of l∗(i) in (4.38) vs. (i).

A question that comes to mind is, how does the optimal Lagrangian index policy
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Figure 4.7: Optimal Lagrangian index l∗(i) vs. buyer index (i) using the optimal La-
grange multiplier λ∗.

compare to the optimal buyer selection policy? To address this question, we compute

l∗(i) for the FOQ policy y(α) = n − 1, ∀α, for which we know from Proposition 4.4

that the optimal selection policy is index policy uz where the optimal index z(i) is

given by (4.17) and, in the case of two buyers, (4.22).

Corollary 4.3. If y(α) = n − 1, ∀α, the optimal Lagrangian index for buyer i is

given by:

l∗(i) =

 s(i), if
∑n

k=1 q(k)(1) ≤ n− 1,

r(i) +
(
r(i) − r(n)

) γ(i)
1− γ(i)

, otherwise,
i ∈ B, (4.39)

where (i) indicates the index of the buyer with the ith highest revenue rate. For

n = 2 (B = {1, 2}), (4.39) is equivalent to:

l∗(i) =

{
s(i), if q1(1) + q2(1) ≤ 1,

r(i), otherwise,
i ∈ B. (4.40)

The proof is in Appendix A. By comparing l∗(i) in (4.39) and z(i) in (4.17) it is

obvious that the two indices differ, although both are increasing in r(i) and γ(i). It

can be shown that l∗(i) ≤ z(i) if
∑n

k=1 q(k)(1) > n − 1 and r(i)/r(n) ≤ γ(i) + (1 −
γ(i))/

∏
k∈B\{i} qk(1); otherwise, l

∗
(i) > z(i). For n = 2, expression (4.40) states that

if the total demand is relatively low, l∗(i) = s(i); otherwise, l
∗
(i) = r(i). This behavior

echoes the observed behavior of the optimal policy in Section 4.5, that when the

ending state is bad (i.e., with low expected demand), the optimal selection focuses on
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maximizing future demand; otherwise, it focuses on maximizing the current revenue.

Moreover, as was mentioned earlier, l∗(i) depends on y(α), so it is weakly-coupled. This

implies that the Lagrangian index policy has some of the properties of the optimal

policy, which the Whittle index policy does not have. We, therefore, expect the former

policy to outperform the latter.

4.7.3 Active-constraint index policy

TheWhittle and Langrangian indices are derived from (4.35), where the buyer-specific

approximation of the value functionWi(αi) is V̂
λ
i (αi) in (4.29). For the Whittle index,

the penalty price wi for violating capacity constraint (4.5) is discriminatory (buyer-

specific) and hence ignores capacity. For the Lagrangian index, the penalty price λ∗

is uniform (common for all buyers). In both cases, this price is applied whenever

the firm selects buyer i (ui = 1), even if constraint (4.5) is not active, i.e., even if

there is enough capacity to serve buyer i without depriving another buyer of service.

This makes capacity more expensive than it really is and introduces a bias in the

approximation. To remedy this, we consider an alternative index policy, which we

refer to as the active-constraint index policy, where a discriminatory penalty price

is applied only when the capacity constraint is active, i.e., when D−i ≥ y(α). The

active-constraint index, denoted by θi, is defined as:

θi = ri + Ṽ θi
i (1)− Ṽ θi

i (0), i ∈ B, (4.41)

where the buyer-specific value function Ṽ θi
i (αi) solves the following the DP:

Π̃θi
i + Ṽ θi

i (αi) = E
d

[
max

ui∈Ui(di)

{(
ri − θi1{D−i≥y(α)}

)
ui + Ṽ θi

i (ui + (1− di)αi)
}]

, (4.42)

for i ∈ B. DP (4.42) is the outcome of a stronger relaxation compared to DP

(4.29), at the expense of requiring more computations, as its solution depends on the

distribution of D−i, F−i(y).
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Proposition 4.8. The solution of DP (4.42) is:

Ṽ θi
i (1) = ri

γiF−i(y(α)− 1)

1− γiF−i(y(α)− 1)
, Ṽ θi

i (0) = 0, i ∈ B, (4.43)

Π̃θi
i = riqi(1)

(1− γi)F−i(y(α)− 1)

1− γiF−i(y(α)− 1)
, i ∈ B. (4.44)

The resulting active-constraint index defined in (4.41) is:

θi(α) =
ri

1− γiF−i(y(α)− 1)
, i ∈ B. (4.45)

The proof is in Appendix A. Note that θi(α) is strongly coupled, since it depends

on both y(α) and the vector of satisfaction states of all buyers except i (recall that

D−i is a function of αk, k ∈ B \ {i}). From (4.45), θi(α) has a striking resemblance

to zi in (4.17). The buyer-specific terms ri and γi are identical to those in zi, and the

term F−i(y(α)− 1) is similar to the term F 1
−i(n− 2). It represents the type-I service

level of all other buyers, if buyer i is served, i.e., it is the probability that the total

demand of the other n − 1 buyers is at most y(α) − 1. Note that if qi(αi) > qj(αj),

then F−i(y(α) − 1) > F−j(y(α) − 1), for i ̸= j. This means that by favoring a

buyer with a higher qi(α), the firm reduces the probability of stockout for the other

buyers, thus increasing the chance of ending up in a greater satisfaction state vector

and leading to more well-balanced satisfaction and service levels among the buyers.

This term gives the active-constraint index policy a significant advantage over policies

that use uncoupled indices, such as the revenue-greedy policy ur with index ri and

the augmented-revenue-greedy policy us with index si = ri/(1 − γi). These policies

rely on a strict prioritization of the buyers which is independent of their satisfaction

states and can lead to very unbalanced satisfaction and service levels that are biased

towards the high-priority buyers.

Note that the term in the numerator of (4.45) refers to the current revenue of the

firm, while the term in the denominator refers to the drop in future demand. The lower

the vector of satisfaction states αk, k ∈ B\{i}, the higher F−i(y(α)−1), and therefore

the higher the impact of the loss in future demand compared to that of the current
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revenue in the computation of θi(α). As in the case of the Lagrangian index policy,

this behavior reflects the observed behavior of the optimal policy in Section 4.5 that

when the ending state has low expected demand, the optimal selection focuses on the

loss in future demand; otherwise, it focuses on the current revenue. An important

difference, however, is that in the active-constraint index policy, the emphasis on

the current revenue or future demand changes dynamically based on the satisfaction

state vector, whereas, in the Lagrangian index policy, it is static. As was noted in the

previous paragraph, this constitutes a significant advantage of the active-constraint

index policy.

Finally, the following property further reinforces our intuition that the active-

constraint index policy is expected to outperform the Whittle and Lagrangian index

policies.

Corollary 4.4. If y(α) = n − 1, ∀α, the active-constraint index policy is identical

to the optimal buyer selection policy uz given by Proposition 4.4.

The proof is in Appendix A. Corollary 4.4 implies that if y(α) = n− 1, ∀α, the

active-constraint index policy is optimal. This is a very attractive property that none

of the other two Lagrangian-relaxation-based index policies have.

4.8 Numerical results

We complement our analytical results with a computational study in which we nu-

merically solve equation (4.12) for the three index policies considered in Section 4.7,

for a large number of problem instances with five and ten buyers. Our aim is to

explore and compare the performance of these policies, reinforce some of our earlier

insights, and make new observations. For the five-buyer instances, we also evaluate

the index and the FOQ policies against the optimal policy.

4.8.1 Evaluation of index policies

To investigate the performance of the optimal policy and compare it to that of the

three Largangian relaxation-based index policies, we numerically solve 250 instances
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of a problem with five buyers (n = 5, B = {1, 2, 3, 4, 5}) under all policies. In each

instance, we set c = 1 and randomly generate the visit rates within the following

ranges: qi(0) ∈ (0.005, 0.77) and qi(1) ∈ (qi(0), 0.96), i ∈ B. We also generate

five revenue rate values in the interval (1.15, 1.25), sort them in decreasing order,

and assign them to the buyers so that ri > ri+1, i ∈ {1, 2, 3, 4}, to facilitate the

presentation of the buyer-specific results.

For each instance, we numerically solve equation (4.10) for the optimal policy,

and equation (4.12) for the three index policies, using value iteration. The solution

of (4.10) yields the optimal buyer selection policy u∗ = uy∗,∗ = u∗(α, y∗,d), the

optimal ordering policy y∗ = y∗,u
∗
= y∗(α|u∗), and the corresponding maximum

average expected profit Π = Π∗,u∗
. The solution of (4.12), for each index policy ux,

x = r, l∗, θ, yields the optimal ordering policy y∗,u
x
= y∗(α|ux) and the corresponding

average expected profit Π∗,ux
.

For each instance and for each policy u, we also determine the average expected

optimal order quantity, denoted by ȳ∗,u, and the average expected demand and service

rates of buyer i, denoted by d̄i
∗,u

and ūi
∗,u, i ∈ B, respectively. To compute these

measures, we run, on the side of the main value iteration, additional value iterations

of the following DP equations, where in each iteration we use the decisions y(α) and

u(α, y(α),d) that result from the maximization step in the main iteration:

ȳ∗,u + V̄ y(α) = E
d

[
y(α) + V̄ y(Φ(α,u(α, y(α),d),d))

]
, ∀α,

d̄i
∗,u

+ V̄ di(α) = E
d

[
di + V̄ di

i (Φ(α,u(α, y(α),d),d))
]
, ∀α, i ∈ B,

ūi
∗,u + V̄ ui

i (α) = E
d

[
ui(α, y(α),d) + V̄ ui

i (Φ(α,u(α, y(α),d),d))
]
, ∀α, i ∈ B.

Finally, we calculate the average expected fill rate for each buyer i, denoted by

S∗,u
i , defined as the average expected probability that buyer i is served given that she

demands service, as follows:

S∗,u
i =

ūi
∗,u

d̄i
∗,u . (4.46)

Figures 4.8 and 4.9 show plots of the average expected profit, order quantity, and

fill rate for buyers 1, 3, and 5, under the four considered policies, for the first 100
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instances. In each plot, the instances are sorted in ascending order of the values of

the optimal policy, for ease of exposition.
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Figure 4.8: Average expected profit and order quantity under different policies for
100 instances of a problem with five buyers.
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Figure 4.9: Average expected fill rate for buyers 1, 3, and 5 under different policies
for 100 instances of a problem with five buyers.

From Figure 4.8, we observe that the average expected profit and order quan-

tity values of the active-constraint index policy are extremely close to the respective

values of the optimal policy. For the Lagrangian and Whittle index policies, these

performance measures deviate visibly from their optimal policy counterparts.

Figure 4.9 shows that in general, S∗,u
1 > S∗,u

3 > S∗,u
5 . This is expected, since in

all the instances r1 > r3 > r5, whereas the visit rates are generated similarly for all
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buyers. In more than half, about half, and less than half of the instances, S∗,u∗

1 , S∗,u∗

3 ,

and S∗,u∗

5 are equal to one. The average expected fill rate of the active-constraint

index policy is equal to or quite close to the respective value of the optimal policy,

whereas, in the Lagrangian and Whittle index policies, it deviates substantially from

the optimal. This deviation is mostly positive for buyer 1, both positive and negative

for buyer 3, and negative for buyer 5. This is expected, because the Whittle index

policy is revenue-greedy, assigning the highest priority to buyer 1 and the lowest to

buyer 5, and the Lagrangian index policy is often identical to or close to a revenue-

greedy policy.

Table 4.3 shows the sample mean and standard deviation, over all 250 instances,

of the average expected profit, order quantity, and fill rates of the optimal policy

(column 2). It also shows the sample mean and standard deviation of the percent

difference of the average expected profit, order quantity, and fill rates of the three

index policies from the respective values of the optimal policy (columns 3–5).

Table 4.3: Average performance (sample mean and standard deviation) of all policies,
for 250 instances of a five-buyer problem.

Active-constraint index Lagrangian index Whittle index
Performance Opt u = uθ u = ul∗ u = ur

measure u = u∗ (% diff from Opt) (% diff from Opt) (% diff from Opt)
Π∗,u (0.33, 0.11) (-0.28, 0.51) (-14.02, 14.75) (-15.36, 16.66)
ȳ∗,u (2.81, 0.62) (-0.34, 1.46) (-7.18, 19.16) (-9.66, 19.37)
S∗,u
1 (0.81, 0.29) (0.76, 18.00) (59.22, 117.61) (60.86, 120.52)
S∗,u
2 (0.75, 0.31) (-0.50, 14.65 ) (58.20, 110.41) (58.80, 114.24)
S∗,u
3 (0.76, 0.32) (1.09, 18.66) (23.53, 84.75) (21.36, 84.28)
S∗,u
4 (0.68, 0.34) (1.00, 17.46) (-11.76, 55.07) (-15.63, 56.05)
S∗,u
5 (0.58, 0.35) (5.35, 22.19) (-28.81, 52.84) (-30.59, 53.63)

We observe that the mean average expected profit and order quantity of the op-

timal policy is 0.33 and 2.81, respectively, while the mean average expected fill rate

ranges from 0.58 for buyer 5 to 0.81 for buyer 1. This suggests that the optimal

selection policy tries to keep the fill rates relatively balanced. The average expected

profit and order quantity of the active-constraint index policy decrease by only 0.28%

and 0.34% from the respective values in the optimal policy, indicating that the active-

constraint index policy is near-optimal. The average expected fill rate increases for
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all buyers, except buyer 2, for whom it slightly decreases. The increase in the fill

rates for almost all buyers under a suboptimal policy seems counter-intuitive at first.

However, it can be explained by the fact that the suboptimal selection can cause the

average demand of the buyers to drop more than their average service rate does, i.e.,

the denominator of Si in (4.46) can decrease more than the numerator for all buyers.

The mean percent differences of the performance measures of the Lagrangian and

Whittle index policies from the respective values of the optimal policy are significantly

larger, with the Whittle index policy having the worst performance. Its mean average

expected profit and order quantity are 15.36% and 9.66% lower than the respective

values of the optimal policy, and its mean average expected fill rate ranges from

60.86% higher for buyer 1 to 30.59% lower for buyer 5 than the respective values of

the optimal policy. The fact that S∗,ur

1 < 100%, even though buyer 1 always has

top priority, is because, in some satisfaction states, the order quantity is zero, as was

discussed in the two-buyer example in Section 4.4.2.

The mean value of ȳ∗,u of all the index policies is lower than the respective value

of the optimal policy (this can also be seen from Figure 4.8). This suggests that the

firm, by selecting buyers inefficiently, loses demand and is forced to cut its orders to

adapt to the lower demand.

4.8.2 Evaluation of FOQ policy

In the previous section, we computed the optimal ordering policy for the optimal

and the three index buyer selection policies considered in Section 4.7. A question

that arises is, how well does the best FOQ policy perform compared to the optimal

ordering policy? This question is of interest in situations where the firm must allocate

a fixed capacity instead of a variable order quantity Adelman and Mersereau (2013);

Klein and Kolb (2015); so, designing this capacity is a concern.

To address this question, we devise a procedure in which we fix y(α) = yF , ∀α,

and numerically solve equation (4.11) for the optimal buyer selection policy, and

equation (4.12) without the maximization step for the three index policies, using

value iteration. We run this procedure for each yF ∈ B0 and for each of the 250



122 CHAPTER 4. ORDERING AND BUYER SELECTION POLICIES

Table 4.4: Percent difference (sample mean and standard deviation) of the average
performance of the optimal FOQ policy (under all selection policies) from the optimal
policy, for 250 instances of a five-buyer problem.

Performance Opt Active-constraint index Lagrangian index Whittle index
measure u = u∗ u = uθ u = ul∗ u = ur

100× (Πy∗F ,u − Π∗,u∗
)/Π∗,u∗

(-0.47, 0.90) (-0.72, 1.14) (-15.32, 16.30) (-16.91, 18.54)
100× (y∗,uF − ȳ∗,u

∗
)/ȳ∗,u

∗
(0.42, 7.75) (0.55, 8.0) (-7.36, 21.09) (-10.12, 21.40)

instances considered earlier. For each instance and each buyer selection policy u, we

select the optimal value of yF that yields the highest average expected profit, denoted

by y∗,uF .

Table 4.4 shows the sample mean and standard deviation, over all 250 instances, of

the percent difference of the average expected profit and optimal FOQ of the optimal

and the three index selection policies from the average expected profit and the average

order quantity of the optimal policy.

We observe that the mean drop in the average expected profit of the optimal

FOQ policy under the optimal selection policy u∗ is only 0.47% and that y∗,u
∗

F is

only 0.42% higher than ȳ∗,u
∗
on average. The mean percent differences of the average

expected profit and order quantity of the FOQ policy under any index policy from

the respective values of the optimal policy also change very modestly compared to

the corresponding differences in Table 4.3. For example, compare the 15.32% profit

loss and 7.36% drop in the average order quantity of the Lagrange index policy using

the best FOQ to the 14.02% profit loss and 7.18% drop in the average order quantity

of the same index policy using optimal ordering.

These results suggest that the FOQ policy can be fairly efficient if yF is chosen

optimally. If the wrong value of yF is used, however, the average expected profit can

drop significantly. Figure 4.10 shows plots of the percent drop in the average expected

profit of the optimal selection policy using an FOQ policy y(α) = yF , ∀α from the

respective value of the optimal policy, for different yF values, for seven representative

instances.

The plots show that if the wrong yF is used, the drop in average expected profit

can be extremely high. For the particular set of 250 instances considered, y∗,u
∗

F =

0, 1, 2, 3, 4, 5 in 0% 2%, 26%, 61%, 11%, and 0% of the instances, respectively. In
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Figure 4.10: Percent profit loss of the FOQ policy under the optimal selection, for
different FOQ values, for seven representative instances of a problem with five buyers.

almost all instances, the value of yF that yields the smallest average expected profit

is 5.

4.8.3 Effect of number of buyers and revenue rates

To investigate the effect of the number of buyers on the performance of the different

policies considered, we numerically solve 150 instances of a problem with ten buyers

(n = 10, B = {1, . . . , 10}). In each instance, we set c = 1 and randomly generate

the rest of the parameters within the following ranges: qi(0) ∈ (0.005, 0.89), qi(1) ∈
(qi(0), 0.99), and ri ∈ (1.15, 1.25), i ∈ B. Numerically finding the optimal policy

for this problem is computationally intractable, because the number of computations

that must be performed in each value iteration is 65.71 million, as was mentioned

in Section ??. Hence, we limit our study to the three Lagrangian relaxation-derived

index policies.

Figure 4.11 shows plots of the average expected profit and order quantity under

the three index policies, for the first 100 instances. In each plot, the instances are

sorted in ascending order of the values of the active-constraint index policy, for ease

of exposition. These plots show that the average expected profit and order quantity

under the Lagrangian and Whittle index policies deviate visibly from the respective

values under the active-constraint policy, as was the case in the five-buyer problem.

Table 4.5 shows the sample mean and standard deviation, over all 150 instances, of
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Figure 4.11: Average expected profit and order quantity under different policies for
100 instances of a problem with ten buyers.

the average expected profit and order quantity of the active-constraint index policy in

column 2. Columns 3–4 show the sample mean and standard deviation of the percent

difference of the average expected profit and order quantity of the Lagrangian and

Whittle index policies from the respective values of the active-constraint policy.

Table 4.5: Average performance (sample mean and standard deviation) of all policies,
for 150 instances of a ten-buyer problem.

Lagrangian index Whittle index
Performance Active-constraint index u = ul∗ (% diff u = ur (% diff
measure u = uθ from Active-constraint index) from Active-constraint index)
Π∗,u (1.30, 0.15) (-7.23, 5.46) (-8.21, 6.25)
ȳ∗,u (7.45, 0.58) (-4.56, 7.51) (-5.96, 7.04)

We observe that the mean average expected profit and order quantity of the active-

constraint index policy is 1.30 and 7.45, respectively. The mean decrease in perfor-

mance of the Lagrangian and Whittle index policies compared to the active-constraint

policy is sizable but not as high as the respective drop in the five-buyer problem. As

in the five-buyer problem, the Whittle index policy has the worst performance, with

a mean average expected profit and order quantity which are 8.21% and 5.96% lower,

respectively, than the respective values of the active-constraint policy.

Finally, to investigate the effect of the revenue rates on the performance of the
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three index policies, we numerically solve 150 instances of a problem with ten buy-

ers, where in each instance, we set c = 1, and we randomly generate the rest of the

parameters in the following ranges: ri ∈ (1.5, 1.7), ∀i ∈ B, qi(0) ∈ (0.1, 0.7) and

qi(1) ∈ (qi(0), 1), i ∈ B. That is, the visit rates are slightly less differentiated between

buyers than in the previous set of instances, while the revenue rates are more differ-

entiated and higher than in the previous set of instances. The idea is to increase the

weight of the current revenue relative to that of the loss in future demand.

For this set of instances, the mean average expected profit of the active-constraint

index policy is 3.37, i.e., much higher than the respective value in the previous set of

instances (1.30). Moreover, the mean percent difference of the average expected profit

of the Lagrangian and Whittle index policies from the respective value of the active-

constraint index policy is 2.24% and 5.07%, respectively, i.e., much smaller than the

respective differences in the previous set of instances (7.23% and 8.21%). This is

expected because, in the new set of instances, the revenue rates are much higher

and more differentiated than those in the previous set. The higher and the more

differentiated the revenue rates, the better the performance of the myopic revenue-

greedy policy (i.e., the Whittle index policy) and the Lagrangian index policy, which,

as was mentioned earlier, is often identical to or close to the revenue-greedy policy.

4.9 Discussion and future research

The reactions of heterogeneous buyers to stockouts give rise to a complicated set of

trade-offs in inventory and buyer portfolio management. Firms often overlook these

trade-offs and deal with the adverse effect of stockouts on buyer goodwill with a

penalty cost or a service level constraint, ignoring the effect of goodwill changes on

future demand. Moreover, they typically prioritize buyers based on their past sales

or margins, ignoring the long-term importance of each buyer. Ordering and buyer

selection decisions necessitate more sophisticated practical approaches that carefully

balance the acquisition cost, the current revenue from the satisfied buyers, and the

loss in future demand from the dissatisfied buyers.

Our model can be extended in several directions. One direction is to consider
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markets where unused items are not perishable but are carried over to the next period

at a cost, and/or unserved buyers incur a penalty cost in addition to the loss in future

demand.

Another direction is to consider ways in which the firm can mitigate the stockout

risk, for example by including an expensive backup supplier to cover some of the

excess demand, or by incorporating personalized dynamic pricing to expedite the

return of dissatisfied buyers.



Chapter 5

Thesis Summary

Designing inventory control policies that account for the adverse effect of stockouts on

buyer (or customer) goodwill and future demand has long been a challenging issue for

OR/OM researchers and practitioners. To address this issue, we develop and analyze

three multi-period models of a supplier(s) selling items to the buyer(s) whose demand

is driven by past service.

In Chapter 2, we develop a multiperiod model of a supplier selling items to

a buyer who rates the supplier based on the history of her service, measured in

terms of in-stock/out-of-stock incidents. We show that while the myopic policy is a

basestock policy with rating-dependent basestock levels, the optimal policy for the

infinite-horizon problem partitions the inventory space in several order-up-to and do-

not-order intervals, for each rating. The optimal decision—order up to the next point

or do not order—depends on whether ordering reduces the risk of downrating the

supplier—lowering her expected future profits—enough to offset the resulting increase

in ordering and inventory holding costs. This tradeoff depends on the inventory level

and the buyer demand density function. We derive and evaluate bounds on the

optimal policy and found properties of this policy. We show that a basestock policy

is optimal and analytically tractable for cases where the buyer has random demand

but short memory of service (two ratings), and constant demand but long memory

(more than two ratings). If the buyer has random demand and long memory of

service, a basestock policy is optimal under a certain condition on the demand and
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other parameters. We use the service-driven model to impute the fixed stockout cost

reflecting the loss of goodwill due to a stockout in a newsvendor model that posits

such a cost. Our results show that using the imputed stockout cost is quite efficient,

thus providing a justification for the use of the newsvendor model. However, using

an arbitrary, fixed stockout cost can significantly reduce the supplier’s profits.

In Chapter 3, we develop a model of a repeat buyer (she) sharing her patronage

among two heterogeneous newsvendor-type suppliers over an infinite horizon. To

enjoy the best service advantage, the buyer plays one supplier (him) against the other

by rewarding product availability with repurchase (loyalty) and punishing stockouts

with switching (disloyalty) in the next period.

Our analytical and numerical results provide new insight into these decisions.

They suggest that the main concern of the suppliers under competition is to maintain

the buyer’s loyalty because losing it as a result of a stockout means foregoing profits for

many periods following the stockout. This concern forces each supplier to significantly

increase his active basestock level above his myopic level, reducing the frequency of

stockouts and the role of the backorder cost.

The benefits of supplier competition for the buyer are completely wiped out if

the suppliers decide to cooperate. In this case, the supplier with the lower myopic

profit lowers his active basestock level below his myopic level—possibly down to

zero—ceding his demand share to the more profitable supplier who sets his active

basestock level above his myopic level but still below his basestock level at equilibrium

under competition. The buyer can recover the high fill rate that she can enjoy under

competition if she charges the cooperating suppliers an adjustment penalty backorder

rate when products are unavailable on demand. This rate can be excessively high to

be of practical use if the suppliers’ margin-to-interest rate is high.

Finally, most of the results for two suppliers extend to multiple suppliers if the

buyer uses a round-robin policy where she switches from one supplier to the next on

a circular basis after each stockout.

In Chapter 4, we develop a newsvendor model of a firm with a number of het-

erogeneous buyers that captures the effect that the joint ordering and buyer selection

decisions have on the visit dynamics of the buyers and the long-term average profit
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of the firm.

We show that for two buyers, the optimal selection policy is index-based where

the index of each buyer is increasing in her revenue rate, the relative loss in her future

demand if she is not served, and the type-I service level of the other buyer if she is

served. This implies favoring buyers who are profitable, reactive to quality-of-service

changes, and predictable in their visit behavior when satisfied.

We demonstrate that for more buyers, the optimal selection policy is not index-

based but may depend on the demand realization. Our results suggest that if the

ex-post satisfaction state is high, the firm should select buyers to maximize current

revenues; otherwise, it should select buyers to maximize future demand.

Our analysis suggests that under optimal selection, the optimal order quantity is

non-decreasing in the satisfaction state of the buyers. For two buyers, this implies

that effectively an FOQ policy is optimal in steady state. We demonstrate that if

buyers are not selected optimally, it may the firm may be better off ordering fewer

items in a higher satisfaction state than in a lower state, to drive buyer satisfaction

to more profitable states which the suboptimal selection policy fails to do.

For the Lagrangian index policy that we develop based on the relaxed problem,

we manage to derive the “best” Lagrangian price in closed form as the solution to

the Lagrangian dual problem, allowing us to obtain the tightest bound of the original

problem.

The active-constraint index that we develop resonates very well with the observed

optimal policy, leading to relatively well-balanced satisfaction states and service levels

among the buyers. It augments the revenue rate of each buyer by a factor that neatly

separates into two terms: the drop in the buyers’ visit rate if she is not served, and

the type-I service level of the other buyers if she is served. The higher the last term,

the smaller the expected ex-post satisfaction state of the buyers, and the higher the

relative weight of the future demand over the current revenue. Our numerical results

show that the active-constraint index policy is near-optimal.



Appendix A

Chapter 2 Supplemental Material

Intuition behind the optimal policy

To gain intuition behind the optimal policy given by (2.28), consider Figure A.1

which shows graphs of two different demand density functions f(w) and four different

initial inventory levels x0, x̄0, x1, and x̄1 in different areas of the demand space.

The difference between the two graphs is that in (a), f(w) increases sharply and

decreases smoothly, whereas in (b), it increases and decreases smoothly. For each

inventory level, the shaded area of width ϵ represents the reduction in the probability

of a stockout—hence in the risk of downgrading the supplier—if the supplier orders a

small quantity ϵ. For x0 ∈ R0
α in graph (a) and x1 ∈ R1

α in graph (b), this reduction

is significant, because by ordering ϵ, the supplier would eliminate a large area under

the part of f(w) that corresponds to backorders, defined as w > x0 and w > x1,

respectively. Thus, in these cases, it would be worth it for her to order at least ϵ,

despite the resulting higher ordering and inventory holding costs. For x̄0 ∈ R̄0
α and

x̄1 ∈ R̄1
α in graph (b), the reduction is minor. In these cases, it would not be worth

ordering more items. These examples suggest that the number of order-up-to-points

beyond S0
α, n, depends on the shape of f(w), and should be bounded by the number

of its local maxima.

130



131

Order
up to Ј

̴

Ј
̴ = ݓ0

Order
up to Ј

̴
Do not
order

ߝ

Ј
̴ Ԥܴ Ј

̴

( ݓ )

ݓ

ߝ

( ݓ )

Order
up to Ј

̵
Do not
order

Ј
̴ Ԥܴ Ј

̴
Ј
̵ Ԥܴ Ј

̵

Do not
order

Ј
̵ ҧݔ ̵Ј

ݔ̴ ̴0 ҧݔ ̴ ҧݔ ̴ ݏ Ј
̵ ݔ ̵

ߝ
ߝ

ߝ

( ) ( )

Figure A.1: Reduction in the probability that the supplier stocks out, if she orders a
small quantity ϵ, for different demand density functions and initial inventory levels.

Proof of Proposition 2.1. Let Smy
α be the global maximizer of Λα(y). From ex-

pressions (2.11)-(2.12), we get Smy
α = argminy{Lα(y)}, where

Lα(y) = K1y +K2

{
[qα

∫ ∞

y

(w − y) dF (w)]1{y≥0} + [qα (θ − y)− q̄αy] 1{y<0}

}
.

The first two derivatives of Lα(y) are L
′
α(y) = K1−K2(qαF̄ (y)1{y≥0}+1{y<0}) and

L′′
α(y) = K2qαf(y)1{y≥0}. Clearly, L′′

α(y) ≥ 0, implying that Lα(y) is convex, hence

Smy
α is its unique minimizer. From (2.11), this further means that Λ′′

α(y) ≤ 0, hence

Λα(y) is concave and Smy
α is its unique maximizer. Therefore, the optimal inventory

control policy is a basestock policy given by (2.16). If y < 0, then L′
α(y) < 0, since

K1 −K2 < 0 from (2.9). This implies that Smy
α ≥ 0. Moreover, from the first-order

condition, Smy
α = argminy

{
qαF̄ (y) ≤ K1/K2

}
, which can be rewritten as (2.17).

Proof of Proposition 2.2. Proof of (2.18). The proof of (2.18) follows immedi-

ately from (2.10) for Πα(x), and from the definition Vα(x), once we note that y ≥ x

implies that as x→ ∞, y → ∞; therefore, limy→∞ −K1y = −∞.

Proof of (2.20)-(2.21). Consider a nominal and a perturbed sample path that

start from a nominal and a perturbed initial state, (x0, α0) and (x′0, α
′
0), respectively,

where x′0 = x0 and α′
0 > α0. From (2.5), qα′

0
≥ qα0 . Suppose that the nominal path

follows the optimal inventory control policy, while the perturbed path follows the

nominal path by setting y′t = yt, where yt ≥ xt. Clearly, the policy followed by the
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perturbed path is suboptimal. We will show that in each period, the perturbed path:

(i) can always set y′t = yt, and (ii) is always at least as profitable as the nominal

sample path, implying that Πα′
0
(x′0) = Πα′

0
(x0) ≥ Πα0(x0).

To create the two paths, in each period t, generate a common random number

zt ∈ [0, 1] and use it to generate the demand seen by the supplier in the two paths,

denoted by dt and d′t, respectively. There are three cases to consider. Case i: If

0 ≤ zt ≤ qαt , then dt = d′t = wt; Case ii: if qαt < zt ≤ qα′
t
, then dt = 0 and d′t = wt;

Case iii: if qα′
t
< zt ≤ 1, then dt = d′t = 0, where wt is the buyer demand in period t.

Start by setting y′0 = y0. This is feasible since x′0 = x0. Then, generate w0 from

f (·) and z0 and use it to generate d0 and d
′
0, respectively, based on the rule described

above.

Case i: If z0 ≤ qα0 , then d′0 = d0 = w0, x1 = y0 − d0 = y0 − w0, and x′1 =

y′0 − d′0 = y0 − w0 = x1. Moreover, y1 ≥ x1. Setting y
′
1 = y1 is feasible since x′1 = x1.

There are two subcases. Subcase i-a: If w0 > y′0 = y0, then α1 = α0 − δ−α0
and

α′
1 = α′

0 − δ−α′
0
. From (2.4) and the assumption α′

0 > α0, it follows that α
′
1 ≥ α1. If

α0 = 1 and α′
0 = 2, then from (2.4), α′

1 = α1 = 1. Subcase i-b: If w0 ≤ y′0 = y0,

then α1 = α0 + δ+α0
and α′

1 = α′
0 + δ+α′

0
. From (2.4) and the assumption α′

0 > α0, it

follows that α′
1 ≥ α1. If α0 =M − 1 and α′

0 =M , then α′
1 = α1 =M .

Case iii: If z0 > qα′
0
, then d′0 = d0 = 0, x1 = y0 − d0 = y0, and x

′
1 = y′0 − d′0 =

y0 = x1. Since d0 = 0, y1 = y0. Again, setting y
′
1 = y1 is feasible since x′1 = x1. Also,

α1 = α0 and α′
1 = α′

0, where α
′
1 > α1, since α

′
0 > α0.

In both cases i and iii, the perturbed and nominal paths are identical. Thus, both

paths give rise to the same profits for the supplier. Also, the ratings in both paths

either maintain their order or become identical, in which case, they coincide from

that point on.

Case ii: If qα0 < z0 ≤ qα′
0
, then d0 = 0, d′0 = w0, x1 = y0 − d0 = y0 ≥ x0,

and x′1 = y′0 − d′0 = y0 − w0 < x1. Moreover, α1 = α0, y1 = x1 = y0, and the

supplier’s profit in the nominal path is −hy0 (loss). In the perturbed path, there

are two subcases. Subcase ii-a: If w0 > y′0 = y0, the supplier receives a revenue

of ry0 and ends up with inventory x′1 = y0 − w0 < 0, incurring a backorder cost of

b (w0 − y0). Considering also the revenue r (x′1)
− = r (w0 − y0) for the backordered



133

demand that she will receive in the next period at a discount of β, her total current

revenue is ry0 + βr (w0 − y0). She can set y′1 = y1 = y0 if she orders w0 > 0 at

a cost of βcw0, when rolled back into the current period. Therefore, her profit is

ry0 + βr (w0 − y0) − b (w0 − y0) − βcw0 = [(1− β) r + b] y0 + (βp − b)w0 > −hy0
(profit in the nominal path), since by assumption βp−b > 0. Moreover, α′

1 = α′
0−δ−α′

0
.

From (2.4) and the assumption α′
0 > α0 = α1, it follows that α′

1 ≥ α1. Note that

if α′
0 = α0 + 1, then from (2.4), α′

1 = α1 = α0. Subcase ii-b: If w0 ≤ y′0, the

supplier receives a revenue of rw0, ends up with inventory x′1 = y′0−d′0 = y0−w0 ≥ 0,

incurring an inventory holding cost of h (y0 − w0). She can set y′1 = y1 = y0 if she

orders w0 > 0 at a cost of βcw0, when rolled back into the current period. Thus,

her profit is rw0 − βcw0 − h (y0 − w0) = (r − βc+ h)w0 − hy0 > −hy0 (profit in the

nominal path). Moreover, α′
1 = α′

0 + δ+α′
0
. From (2.4) and the assumption α′

0 > α0, it

follows that α′
1 ≥ α1. From the above analysis, in both subcases, y′1 = y1, α

′
1 ≥ α1,

and the perturbed sample path has a higher profit than the nominal path.

Repeating the same argument for the next period and all the periods thereafter, we

can see that in each period t, y′t = yt and α
′
t ≥ αt, and the profit of the perturbed path

is greater than or equal to that of the nominal path. Almost surely, at some point,

the rating of the perturbed path will coincide with the rating of the nominal path

and the two paths will be identical from then on. Therefore, the total profit of the

perturbed sample path is greater than or equal to the total profit of the nominal path,

which implies that Πα′
0
(x′0) = Πα′

0
(x0) ≥ Πα0(x0). Clearly, from (2.10), Vα′

0
(x′0) =

Vα′
0
(x0) ≥ Vα0(x0), too.

Proof of (2.22)-(2.23). A lower bound for Πα(x) can be constructed by considering

the myopic policy given by Proposition 2.1, or any other feasible policy. Here, we

consider an order-up-to policy with rating-dependent order-up-to points Sα, where,

similarly to Smy
α , Sα is non-decreasing in α. This property guarantees that if x0 ≤ Sα0 ,

then y0 = Sα0 , and more generally, yt = Sαt , t > 0. As a result, {αt, t ≥ 0} is a

discrete-time Markov chain with state-space A and non-zero transition probabilities
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pα,α′ that are independent of xt and are given as follows:

pα,α−1 = qαF̄ (Sα), 1 < α ≤M, pα,α+1 = qαF (Sα), 1 ≤ α < M − 1,

pα,α = q̄α + qαF̄ (Sα)1{α=1} + qαF (Sα)1{α=M}, 1 ≤ α ≤M.
(A.1)

The resulting discounted expected profit, which is denoted by Πl
α(x), satisfies Π

l
α(x) =

c(x)+ + p(x)− + V L
α (x), where V L

α (x) is the value function corresponding to the con-

sidered policy and is a lower bound for Vα(x). For x ≤ Sα, V
L
α (x) = V L

α (Sα), where

V L
α (Sα) is obtained by solving the following equation:

V L
α (Sα) = Λα(Sα) + β

∑
α′

pα,α′V L
α′ (Sα′) , α ∈ A. (A.2)

From the monotonicity of qα and Sα, it follows that Λα(Sα) and V L
α (Sα) are also

increasing in α. Letting VL and Λ denote the vectors
(
V L
1 (S1), . . . , V

L
M(SM)

)
, and

(Λ1(S1), . . . ,ΛM(SM)), respectively, and letting P denote transition probability ma-

trix of the discrete-time Markov chain defined above, A.2 can be written in matrix

form as VL = Λ + βPVL. The solution of this equation is VL = (I− βP)−1 Λ,

where I is the identity matrix. Note that P is a tridiagonal matrix and so is I− βP.

The inverse of the latter matrix can be obtained using a formula developed by Us-

mani (1994) for computing the inverse of tridiagonal matrices based on their principal

minors. Applying that formula to our problem, yields:

V L
α (Sα) =

α−1∑
j=1

(
βα−jΛj (Sj)

ηj−1φα+1

ηM

i∏
k=j+1

qkF̄ (Sk)

)
+ Λα(Sα)

ηα−1φα+1

ηM

+
M∑

j=α+1

(
βj−αΛj (Sj)

ηα−1φj+1

ηM

j−1∏
k=i

qkF (Sk)

)
,

(A.3)

where ηi, i = 0, . . . ,M , are the principal minors of I− βP and satisfy the recurrence

equations:

η0 = 1, η1 = 1− β(1− q1F (S1)),

ηi =
(
1− βq̄i − βqiF (Si)1{i=M}

)
ηi−1 − β2qiF̄ (Si)qi−1F (Si−1) ηi−2,

(A.4)
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for i = 2, . . . ,M. Similarly, φi, i = 1, . . . ,M + 1, are given by:

φM+1 = 1, φM = 1− β
(
1− qM F̄ (SM)

)
,

φi = (1− βq̄i − βqiF̄ (Si)1{i=1})φi+1 − β2qi+1F̄ (Si+1)qiF (Si)φi+2,
(A.5)

for i = M − 1, . . . , 1. If x0 > Sα0 , setting yt = Sαt may not be feasible. In this

case, the transition probabilities from one rating to another depend on the current

inventory level x, making the computation of V L
α (x) too demanding and outside the

scope of this paper. To bypass this difficulty, we set aside the quantity x − Sα and

hold it as unused inventory forever, at a holding cost of h (x− Sα) / (1− β). Thus,

for any initial inventory level x, the lower bound of Vα(x) is given by V L
α (x) =

−h (x− Sα)
+ / (1− β) + V L

α (Sα), where V
L
α (Sα) is given by (A.3).

Note that the lower bound developed in Lemma 2.1 in Robinson (2016) for a

similar model is a special case of our bound where Sα = 0, α ∈ A. In this case,

V L
α (0) can be found from (A.3), after replacing F (0) = 1 − F̄ (0) = 0, Λα(0) =

(pβ − b) qαθ, ηi =
∏i

k=1(1− β + βqk1{k>1}), and φi =
∏M

k=i(1− β + βqk1{k>1}), i ∈ A,

from (A.4) and (A.5), as follows:

V L
α (0) = (pβ − b) θ

i∑
j=1

βα−j

α∏
k=j

qk/
(
1− β + qkβ1{k>1}

)
, α ∈ A.

This bound is positive, implying (2.19), but smaller than or equal to V L
α (Smy

α ), be-

cause when x ≤ S0
α, the optimal policy is to order up to S0

α, where S
0
α ≥ Smy

α , as was

mentioned earlier.

An upper bound for Πα0(x0) can be constructed by considering the ideal scenario

under which definitions (2.4) are replaced by δ+αt
= 1{αt<M} and δ−αt

= 0. From (2.3),

this implies that αt remains unchanged with probability q̄αt , as before, and increases

by one unit with probability qαt , irrespectively of whether the supplier satisfies the de-

mand or not. Hence, under this scenario, {αt, t ≥ 0} is decoupled from the inventory

control policy of the supplier, and the optimal inventory control policy is the myopic

policy given by Proposition 2.1. The resulting discounted expected profit, which is

denoted by Πu
α(x), satisfies Π

u
α(x) = c(x)++p(x)−+V U

α (x), where V U
α (x) is the value
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function corresponding to the myopic policy under the ideal scenario and is an upper

bound for Vα(x). For x ≤ Smy
α , V U

α (x) = V U
α (Smy

α ), where V U
α (Smy

α ) is obtained by

solving a system of equations identical to that in (A.2) with V U
α (·) instead of V L

α (·).
The solution of that system is given by an expression identical to (A.3) with V U

α (Smy
i )

instead of V L
α (Si). After replacing F (Sj) = F (∞) = 1, Λ (Sj) = Λ

(
Smy
j

)
, j ∈ A,

ηi =
∏i

k=1

(
1− β + βqk1k<M}

)
, and φi =

∏M
k=i

(
1− β + βqk1{k<M}

)
, i = 1, . . . ,M ,

from (A.4) and (A.5), respectively, V U
α (Smy

α ) is given as follows:

V U
α (Smy

α ) =
M∑
j=α

(
βj−α

Λj

(
Smy
j

)
qj

j∏
k=α

qk
1− β + qkβ1{k<M}

)
. (A.6)

If x0 > Smy
α0

, then yt ̸= Smy
αt
, t ≥ 0, and we face the same difficulty in computing V U

α (x)

as in the case of V L
α (x), mentioned earlier. To circumvent this difficulty, we simply

discard quantity x − Smy
α at no cost; therefore, the starting inventory effectively is

Smy
α and hence V U

α (x) = V U
α (Smy

α ), as was the case for x ≤ Smy
α .

Note that Robinson (2016) in Lemma 2.1 developed an upper bound for a simi-

lar model under the assumption that constraint yt ≥ xt is relaxed and the supplier

is allowed to order after the demand has been observed. Obviously, in this case,

the optimal policy is to set yt = dt,∀t, which is equivalent to a make-to-order pol-

icy with known demand. Moreover, the supplier does not incur any holding and

backorder costs and only receives revenue for the items sold. Therefore, her pe-

riod profit is Λα (d) = qαpθ, which is larger than the profit Λα (S
my
α ) that we have

considered. The resulting upper bound for the value function is looser than our

bound, and from (A.6), the upper bound of Robinson (2016) can be written as

V U
α (x0) = pθ

∑M
j=α

(
βj−α

∏j
k=α qk/

(
1− β + qkβ1{k<M}

))
.

Proof of Lemma 2.1. The proof is similar to that of Lemma 2 in Robinson (2016).

After reinstating t, expression (2.15), for yt < 0, becomes:

Hαt (yt) = −Lαt (yt) + β

{
qαt

[∫ ∞

0

Vαt−δ−αt
(yt − wt) dF (wt)

]
+ q̄αtVαt (yt)

}
. (A.7)

Consider a restricted policy where yt ≥ 0 for t ≥ τ, for some period τ . Clearly, the
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discounted expected profit over an infinite horizon under the restricted policy is less

than or equal to the corresponding profit under the optimal policy, but as τ → ∞, the

two profits become equal, since the discounted expected profit is bounded. Therefore,

it suffices to show that the optimal policy y∗t satisfies y∗t ≥ 0 for a finite τ and then

let τ → ∞. Under the restricted policy, y∗t ≥ 0 for t ≥ τ, by definition. To extend

the result to periods t < τ, we use backward induction. Assume that y∗t+s ≥ 0, s > 1.

If yt < 0, then xt+1 < 0, from (2.2); therefore, xt+1 < y∗t+1. Using (2.14), equation

(A.7) becomes,

Hαt(yt) = −K1yt −K2[qαtθ − yt] + β{qαt [

∫ ∞

0

[K3qαt−δ−αt
θ

+Hαt−δ−αt
(y∗t+1)]dF (wt)] + q̄αt [K3qαt−δ−αt

θ +Hαt−δ−αt

(
y∗t+1

)
]}.

The derivative of the above expression is H ′
α (yt) = K2 −K1. The r.h.s. of the above

expression is positive and equal to (1− β) p+b from (2.7), yielding the desired result.

Proof of Proposition 2.3. First, we show that Sn
α ≤ S̄n

α. From (2.31), Sn
a =

argminy≥(x)+ {H ′
α(y) ≤ 0} . From (2.33) and (2.29), a sufficient condition for H ′

α(y) ≤
0 is H ′

α(y) = −L′
α(y) + βqαf(y)

[
Vα+δ+α

(0)− Vα−δ−α
(0)
]
≤ 0, where L′

α(y) = K1 −
K2qαF̄ (y), from (2.27). Substituting L′

α(y), replacing Vα+δ+α
(0) − Vα−δ−α

(0) with its

upper bound ∆α from (2.25), rearranging terms, and using the above expression for

Sn
a , yields the upper bound of Sn

a given by expression (2.35).

Next, we show that S0
α ≥ Smy

α . For α = M , there are two cases to consider. In

case 1, S0
M ≥ 0 and H ′

M (S0
M) = 0, i.e., S0

M satisfies the first-order condition. In case

2, S0
M = 0 and H ′

M(0) < 0. From (2.33) and (2.31), we have,

H ′
M

(
S0
M

)
= −L′

M

(
S0
M

)
+ βqMf

(
S0
M

)
[VM(0)− VM−1(0)] = 0

and,

(1− βq̄M)H ′
M(0) = −L′

M(0) + βqMf(0) [VM(0)− VM−1(0)] < 0,
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for the two cases, respectively. From (2.20), βqMf (·) [VM(0)− VM−1(0)] ≥ 0. There-

fore, the above two expressions imply that L′
M (S0

M) ≥ 0 and L′
M(0) ≥ 0, respectively.

Given that L′′
α(y) = K2qαf(y) > 0 from (2.27), this further implies that Smy

M ≤ S0
M .

For α = M − 1, there are three cases to consider. In case 1, 0 ≤ S0
M−1 ≤ S0

M and

H ′
M−1

(
S0
M−1

)
= 0, i.e., S0

M−1 satisfies the first-order condition. In case 2, S0
M−1 = 0

and H ′
M−1(0) < 0. For these cases, the proof that Smy

M−1 ≤ S0
M−1 is the same as in

the corresponding cases for α = M . In case 3, S0
M−1 > S0

M . From (2.17) and (2.5),

Smy
M−1 ≤ Smy

M . Given that S0
M ≥ Smy

M , as we showed earlier for α =M , it immediately

follows that S0
M−1 ≥ Smy

M−1. The above arguments for α = M − 1 hold similarly for

all the remaining ratings α ∈ {1,M − 2}.

Proof of Proposition 2.4. We use induction. For the one-period problem, Vα(x) =

maxy≥x {Λα(y)}, by (2.14). As was shown in Proposition 2.1, for this problem,

Λ′′
α(y) ≤ 0, which implies that V ′′

α (x) ≤ 0. Assuming that the proposition has been

proved for t − 1 periods, we will show that it holds for t periods. This is equivalent

to showing that if V ′′
α (x) < 0, x ≥ 0, then H ′′

α(y) < 0, y ≥ 0, too. From (2.34), it

suffices to show that −L′′
α(y) + βqαf

′(y)
[
Vα+δ+α

(0)− Vα−δ−α
(0)
]
≤ 0, because all the

other terms in (2.34) are negative. More specifically, the terms containing V ′′
α (·) are

negative because of the induction hypothesis, and the term V ′
α+δ+α

(0+) is negative

from (2.29). Substituting L′′
α(y) = K2qαf(y) > 0 from (2.27) into the above inequal-

ity and rearranging terms yields f ′(y)/f(y) ≤ K2/β
[
Vα+δ+a

(0)− Vα−δ−α
(0)
]
. If (2.37)

holds, the last inequality holds immediately, because Vα+δ+a
(0)−Vα−δ−α

(0) ≤ ∆α from

(2.24).

Proof of Proposition 2.6. To prove (i), write (2.32), for α = 1, 2, after replacing

Lα(y) from (2.27) and rearranging terms the function Gα(y) is equal to,

Hα(y)− βq̄αVα(y)

qα
= −yK1

qα
−K2B(y) + β[

∫ y

0

Vα+δ+a
(y − w)dF (w) + V1(0)F̄ (y)].

From (2.30), the function Gα(y) is either equal to (Hα(y)−C1
α)/qα or (Hα(y)(1−

βq̄α) − C2
α)/qα, where C

1
α, C

2
α are constants, for α = 1, 2, respectively. ∂nGα(y)/∂y

n

is either equal to ∂nHα(y)/∂y
n or (1 − βq̄α)∂

nHα(y)/∂y
n, where 1 − βq̄α > 0. This
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implies that Gα(y) has the same shape as Hα(y). Therefore, both functions attain

all their extrema at the same values of y. This includes the global maximizer, S0
α,

i.e., S0
α = argmaxy {Hα(y)} = argmaxy {Gα(y)} . Therefore, to show that S0

2 ≥ S0
1 ,

it suffices to show that argmaxy {G2(y)} ≥ argmaxy {G1(y)}. Define ∆V2(y) =

V2+δ+2
(y)− V1+δ+1

(y) = V2+δ+2
(y)− V2(y). Clearly, from (2.20), ∆V2(y) ≥ 0 (note that

if M = 2, ∆V2(y) = 0). G2(y)−G1(y) can now be written as follows

G2(y)−G1(y) = [(q2 − q1)K1/q1q2] y + β

∫ y

0

∆V2 (y − w) dF (w) .

Clearly, this difference is a positive non-decreasing function in y, implying that

argmaxy {G2(y)} ≥ argmaxy {G1(y)}.

To prove (ii), write (2.14) for α = 1, 2 and M = 2, after replacing Hα(y) from

(2.32), as follows:

Vα(0) = K3qαθ − Lα

(
S0
α

)
+ βqα

[
V2(0)F

(
S0
α

)
+ V1(0)F̄

(
S0
α

)]
+ βq̄αVα(0).

After some manipulations, the above expression can be specialized for α = 1, 2 as

follows:

V1(0) = K3q1θ − L1

(
S0
1

)
+ βq1F

(
S0
1

)
[V2(0)− V1(0)] + βV1(0),

and

V2(0) = K3q2θ − L2

(
S0
2

)
− βq2F̄

(
S0
2

)
[V2(0)− V1(0)] + βV2(0).

Subtracting the first from the second equation and rearranging terms yields

V2(0)− V1(0) = (K3(q2 − q1)θ − [L2(S
0
2)− L1(S

0
1)])(1− β + β[q2F̄ (S

0
2) + q1F (S

0
1)])

From (2.33), H ′
α (S

0
α) = −L′

α (S
0
α) + βqαf (S

0
α) [V2(0)− V1(0)] = 0, where L′

α (S
0
α) =

K1 − K2qαF̄ (S0
α), from (2.27). Note that L′

1(0) > L′
2(0). There are three cases to

consider:
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Case 1. S0
1 = S0

2 = 0 and S0
2 does not satisfy first-order conditions, i.e.,

L′
2(0) > βq2f(0) [V2(0)− V1(0)]

which can be rewritten as

(K1 +K2q2) (1− βq̄2) > βq2f(0) (K3 −K2) (q2 − q1) θ

after replacing L′
2(0) = K1 − K2q2 and V2(0) − V1(0) from the expression above for

S0
1 = S0

2 = 0.

Case 2. S0
2 satisfies first-order conditions, i.e.,

L′
2

(
S0
2

)
= βq2f

(
S0
2

)
[V2(0)− V1(0)]

and S0
1 = 0 and does not satisfy first-order conditions, i.e.,

LL′
1(0) > βq1f(0) [V2(0)− V1(0)] ,

which can be rewritten K1 −K2q1 > βq1f(0) [V2(0)− V1(0)], where

V2(0)− V1(0) =
(
K3 (q2 − q1) θ −

[
L2

(
S0
2

)
−K2q1θ

])
/
(
1− β + βq2F̄

(
S0
2

))
Case 3. S0

1 and S0
2 satisfy first-order conditions, i.e.,

L′
α

(
S0
α

)
= βqαf

(
S0
α

)
[V2(0)− V1(0)] , α = 1, 2

Replacing L′
α (S

0
α) and V2(0)− V1(0) from above yields (2.41).

Proof of Theorem 2.1. First, we will derive expressions for the average expected

profit under each of the three candidate policies, denoted by Π̃P1 , Π̃PM
, and Π̃Pα−1,α ,∈

{2, . . . ,M}, and then we will compare their values. Under policy P1, the supplier’s

rating is absorbed in the lowest value 1, where she orders up to S0
1 < θ. From (2.44),

Π̃P1 can be written as Π̃P1 = Λ1 (S
0
1) = (p− b) q1θ + [(b+ h) q1 − h]S0

1 . Under PM ,

the supplier’s rating is absorbed in M , where she orders up to S0
M = θ. From (2.44),
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Π̃PM
can be written as:

Π̃PM
= ΛM (θ) = [(p+ h) qM − h] θ. (A.8)

Finally, under Pα−1,α, α ∈ {2, . . . ,M}, the supplier’s rating is absorbed in the set

{α− 1, α}. When in α, she orders up to S0
α < θ, and when in α − 1, she orders up

to S0
α−1 = θ. In fact, α− 1 and α are the states of a two-dimensional Markov chain,

with qα−1 and qα being the transition probabilities from α − 1 to α and from α to

α− 1, respectively. The steady-state probabilities of α− 1 and α are qα/ (qα−1 + qα)

and qα−1/ (qα−1 + qα), respectively. From (2.44), Π̃Pα−1,α can be written as:

Π̃Pα−1,α = Λα−1 (θ)
qα

qα−1 + qα
+ Λα

(
S0
α

) qα−1

qα−1 + qα

=
[(p+ h) qα−1 − h] qαθ + [(p− b) qαθ + ([b+ h] qα − h)S0

α] qα−1

qα−1 + qα

(A.9)

Next, we will show that P1 and Pα−1,α, α ∈ {2, . . . ,M}, can be candidate overall

optimal policies only if S0
1 = 0 and S0

α = 0, respectively. First, we show this for

P1. Note that ∂Π̃P1/∂S
0
1 = (b+ h) q1 − h. The optimal value of S0

1 , denoted by

S0∗
1 , depends on the sign of ∂Π̃P1/∂S

0
1 . If q1 < h/ (b+ h), then S0∗

1 = 0; otherwise,

S0∗
1 = θ−. If we replace S0

1 with θ−, we get Π̃P1 ≤ [(p+ h) q1 − h] θ ≤ Π̃PM
, since

qM ≥ q1. Therefore, the option that policy P1 is overall optimal (in the sense that

Π̃P1 > Π̃PM
) and S0∗

1 = θ− is not feasible. Policy P1 may be overall optimal only if

q1 < h/ (b+ h), which implies that S0∗
1 = 0. Π̃P1 for S0

1 = 0 becomes:

Π̃P1 = (p− b) q1θ. (A.10)

The result for Pα−1,α, α ∈ {2, . . . ,M}, is shown similarly. Namely, the optimal value

of S0
α, denoted by S0∗

α , depends on the sign of

∂Π̃Pα−1,α/∂S
0
α = [(b+ h) qα − h] qα−1/ (qα−1 + qα) .

If qα < h/ (b+ h), then S0∗
α = 0; otherwise, S0∗

α = θ−. If we replace S0
α with θ− in
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(A.9), after some manipulations, we get Π̃Pα−1,α ≤ [(p+ h) 2qα−1qα/ (qα−1 + qα)− h] θ

≤ [(p+ h) qα − h] θ. Noting that qM ≥ qα, it follows that Π̃Pα−1,α ≤ Π̃PM
. Therefore,

the option that policy Pα−1,α, α ∈ {2, . . . ,M}, is overall optimal (in the sense that

Π̃Pα−1,α > Π̃PM
) and S0∗

α = θ− is not feasible. Policy Pα−1,α may be overall optimal

only if qα < h/ (b+ h), which implies that S0∗
α = 0. In this case, if we replace S0

α with

zero in (A.9), we get:

Π̃Pα−1,α =
[(2p− b+ h) qα−1 − h] qαθ

qα−1 + qα
. (A.11)

Moreover, Pα−1,α may be overall optimal if Π̃P1 < Π̃Pα−1,α , which from (A.10) and

(A.11) implies that (p− b) q1 < [(2p− b+ h) qα−1 − h] qα/ (qα−1 + qα). From the as-

sumption βp > b, it follows that for β = 1, the l.h.s. of the above inequality is positive.

Therefore, the r.h.s. must also be positive, which means that λqα−1 > h, where λ is

defined as λ = 2p− b+ h. Note that λqα > λqα−1 > h from (2.5).

Next, we compare policies Pα−1,α and Pα,α+1, for 2 < α < M − 1, by considering

the difference Π̃Pα,α+1−Π̃Pα−1,α . From (A.11), this difference can be written as follows:

Π̃Pα,α+1 − Π̃Pα−1,α =
{(λqα − h) (qα−1 + qα) qα+1 − (λqα−1 − h) (qα + qα+1) qα} θ

(qα−1 + qα) (qα + qα+1)

The denominator in the r.h.s. of the above expression is positive. Therefore, the sign of

the difference Π̃Pα,α+1−Π̃Pα−1,α depends on the sign of the expression in the braces mul-

tiplying θ in the numerator. For this expression, we have: (λqα − h) (qα−1 + qα) qα+1−
(λqα−1 − h) (qα + qα+1) qα = λq2α(qα+1 − qα−1) − h(qα−1qα+1 − q2α) > h[qα(qα+1 −
qα−1)− (qα−1qα+1 − q2α)] = h[qα+1(qα − qα−1)(qα+1 + qα)] > 0, where the first inequal-

ity follows from λqα > h and the second inequality follows from (2.5). Therefore,

Π̃Pα,α+1 > Π̃Pα−1,α . This further implies that the only policy that may be overall op-

timal, besides policies P1 and PM , is policy PM−1,M . The resulting average expected

profit from (A.11) is:

Π̃PM−1,M
=

[(2p− b+ h) qM−1 − h] qMθ

qM−1 + qM
. (A.12)
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To summarize, policies P1 and PM−1,M may be overall optimal if q1 < h/ (b+ h)

and qM < h/ (b+ h), respectively. Policy PM is overall optimal if either qM >

h/ (b+ h) or qM < h/ (b+ h) but Π̃PM
> Π̃P1 and Π̃PM

> Π̃PM−1,M
. From (A.8),(A.10),

and (A.12), the last two conditions can be written as qM > h/(p + h) + q1(p −
b)/(p+ h) and qM > (qM−1/qM)h/ (p+ h) + qM−1 (p− b) / (p+ h). Multiplying both

sides of the second condition with (p+ h) qM , this condition can be rewritten as

(p+ h) q2M − (p− b) qM−1qM − hqM−1 > 0. The l.h.s. of this inequality is a quadratic

function in qM with a positive and a negative solution. Using the positive solution,

we get qM >

[
(p− b) qM−1 +

√
[(p− b) qM−1]

2 + 4 (p+ h)hqM−1

]
/ [2 (p+ h)]. Simi-

larly, P1 is overall optimal if q1 < h/ (b+ h), Π̃P1 > Π̃PM
, and Π̃P1 > Π̃PM−1,M

. From

(A.8),(A.10), and (A.12) these last two conditions can be written as

qM <
h

p+ h
+
q1 (p− b)

p+ h

and

qM <
(p− b) q1qM−1

(p− b) (qM−1 − q1) + (p+ h) qM−1 − h
.

Proof of Proposition 2.7. Expression (2.47) can be written as

L(y) = (K1y +K2B(y) + b̂qF̄ (y))1{y≥0} + (K1y +K2[q(θ − y)− q̄y] + b̂q)1{y<0}.

The first and second derivatives of the above expression are

L′(y) = (K1 −K2qF̄ (y)− b̂qf(y))1{y≥0} + (K1 −K2) 1{y<0}.

and,

L′′(y) = (K2qf(y)− b̂qf ′(y))1{y≥0}

Clearly, L′(y) < 0, y < 0, since K1 − K2 < 0 from (2.9). This implies that all

the minima of L(y) are non-negative. For Λ(y), y ≥ 0, to be concave, we need

Λ′′(y) ≤ 0, y ≥ 0, or equivalently L′′(y) ≥ 0, y ≥ 0, which can be rewritten as (2.48). If
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(2.48) holds, the unique minimizer of L(y) is given by Smy = argminy≥0 {L′(y) ≥ 0},
which can be written as (2.49).

Proof of Proposition 2.8. Consider the SD model under a basestock policy with

a single basestock level S for all ratings, i.e., Sα = S, α ∈ A. Under this policy,

{αt, t ≥ 0} is a discrete-time birth-death process with state-space A and non-zero

transition probabilities pα,α−1 = qαF̄ (S) , 1 < α ≤ M, pα,α+1 = qαF (S) , 1 ≤ α <

M − 1, and pα,α = q̄α+ qαF̄ (S) 1{α=1}+ qαF (S) 1{α=M}, 1 ≤ α ≤M . Using standard

Markov chain analysis, the steady-state probabilities for this process, πα (S), are:

πα (S) =
π1 (S) q1Φ (S)α−1

qα
, α = 2, . . . ,M

and,

π1 (S) =

[
q1
∑

α∈A Φ (S)α−1

qα

]−1

where Φ (S) = F (S) /F̄ (S). Using the above expressions,

q̃ (S) =
∑
α∈A

πα (S) qα = π1 (S) q1
∑
α∈A

Φ (S)α−1 ,

which leads to (2.53). Similarly, we have that

Π̃ (S) =
∑
α∈A

πα (S) Λα (S) = [K3θ −K2B (S)]
∑
α∈A

πα (S) qα −K1S
∑
α∈A

πα (S) ,

which leads to (2.52). The global maximizer of Π̃ (S), S∗, is given by (2.50). Once

S∗ is found, q̃ (S∗) is given by (2.53).

To find the imputed b̂∗ in the FS model, we must solve (2.49) for b̂, after setting

Smy = S∗ and q = q̃ (S∗). There are two cases to consider: S∗ > 0 and S∗ = 0. If

S∗ > 0, then b̂∗ is obtained from (2.49) which leads to the top expression in (2.51).

If S∗ = 0, F (0) = 1 − F̄ (0) = 0, hence π1 = 1, πα = 0, α > 1, and q̃(0) = q1. From

(2.49), b̂ belongs to the interval given by the bottom expression in (2.51), where the

right end of that interval is necessarily positive, i.e., K1 − q1K2 > 0. To see this,
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note that if S∗ = 0, then Π̃′(0) = q̃′(0) (K3 −K2) θ + q1K2 − K1. The first term in

this expression is positive because K3 − K2 > 0 from (2.9) and q̃′ (S) > 0, because

q̃ (S) is increasing in S. If q1K2 −K1 ≥ 0, then Π̃′(0) > 0. However, this cannot be

true, because it would imply that S∗ > 0. Therefore, q1K2 −K1 < 0, or equivalently,

K1 − q1K2 > 0.



Appendix B

Chapter 3 Supplemental Material

Proof of Theorem 3.1. Suppose that supplier i is highly ranked but fails to fully

meet the buyer’s demand. Then, his inventory level becomes negative, and his ranking

turns low. In this case, it is optimal for him to order just enough to satisfy the

backordered demand and end up with zero inventory. Ordering less would result in

him not fully satisfying the backordered demand and receiving the full margin for

it. Ordering more would result in him holding costly inventory that would remain

unused because the buyer never selects the low-ranking supplier. Once supplier i’s

inventory level reaches zero, it is optimal to keep it at zero as long as his ranking

remains low. Therefore, y∗i (2) = 0.

Now suppose that supplier j is highly ranked but fails to fully meet the buyer’s

demand. Then, his inventory level becomes negative, and his ranking turns low,

while the inventory level of supplier i remains at zero and his ranking turns high. In

this case, it is optimal for supplier i to order some quantity si ≥ 0, ending up with

inventory si, in anticipation of the buyer’s demand in the next period; si is, therefore,

a target inventory level. If the demand is greater than si, supplier i will fail to fully

meet the demand, his inventory level will become negative, and his ranking will turn

low. If the demand is less than or equal to si, he will fully meet the demand, his

inventory level will drop below si, and his ranking will remain high. In this case, it

is optimal for him to order up to the target level si again. Therefore, y
∗
i (1) = si.

146
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Based on the above, the ranking vector (αi, αj) of the two suppliers is a discrete-

time Markov chain with two states: (1, 2) and (2, 1). When (αi, αj) = (1, 2), customer

i orders up to si, and his expected profit is given by (3.4), because he receives the

buyer’s demand. Customer j orders up to zero, and his expected profit is zero,

because he does not get any demand. When (αi, αj) = (2, 1), the reverse is true. The

probability of switching from (1, 2) to (2, 1) is F̄ (si), while the probability of switching

from (2, 1) to (1, 2) is F̄ (sj). It is trivial to show that the steady-state probabilities of

states (1, 2) and (1, 2) are F̄ (sj)/[F̄ (sj)+F̄ (si)] and F̄ (si)/[F̄ (sj)+F̄ (si)], respectively,

which implies (3.10).

Proof of Proposition 3.1. From (3.4)–(3.8), Gi(si) > 0, G′
i(si) ≥ 0, for 0 ≤

si ≤ smi , and Gi(si) ≤ 0, G′
i(si) < 0, for si ≥ sMi . From (3.13), this means that

∂Πi(si, sj)/∂si > 0, for 0 ≤ si ≤ smi , and ∂Πi(si, sj)/∂si < 0, for si ≥ sMi , which

implies (3.17).

Proof of Theorem 3.2. (i) The sign of ϕi(si, sj) given by (3.14) determines the sign

of ∂Πi(si, sj)/∂si given by (3.13), since the term F̄ (sj)/[F̄ (sj) + F̄ (si)]
2 in (3.13) is

positive. As mentioned in the discussion following Proposition 3.1, ∂Πi(si, sj)/∂si >

0, for 0 ≤ si ≤ smi , and ∂Πi(si, sj)/∂si < 0, for si ≥ sMi , implying that ϕi(si, sj) > 0,

for 0 ≤ si < smi , and ϕi(si, sj) < 0, for si ≥ sMi . If condition (3.18) holds, then

ϕi(si, sj) is decreasing in si, for si ∈ (smi , s
M
i ). As a result, the first-order condition

∂Πi(si, sj)/∂si = 0, which reduces to ϕi(si, sj) = 0, has a unique solution, s∗i (sj),

satisfying (3.19).

(ii) The derivative of s∗i (sj) with respect to sj is given by (3.20) by using implicit

differentiation. The denominator of the right-hand-side of (3.20) is given by (3.18)

and is negative; therefore, the sign of ∂s∗i (sj)/∂sj is determined by the sign of the

numerator, which is given by (3.16). This quantity is positive for si ∈ (smi , s
M
i ),

because G′
i(si) < 0, for si > smi ; therefore, ∂s

∗
i (sj)/∂sj > 0.

(iii) The derivative of s∗i (sj) with respect to any parameter q can be similarly

computed as ∂s∗i (sj)/∂q = −[∂ϕi(s
∗
i (sj), sj)/∂q]/[∂ϕi(s

∗
i (sj), sj)/∂si]. The denomi-

nator is again given by (3.18), so it is negative; therefore, the sign of ∂s∗i (sj)/∂q

is determined by the sign of the numerator, which from (3.14) is ∂ϕi(si, sj)/∂q =
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(
F̄ (sj) + F̄ (si)

)
∂G′

i(si)/∂q+f(si)∂Gi(si)/∂q. If we substitute f(si) from (3.19), this

can be rewritten as ∂ϕi(si, sj)/∂q =
[(
F̄ (sj) + F̄ (si)

)
/Gi(si)

]
[Gi(si)∂G

′
i(si)/∂q −

G′
i(si)∂Gi(si)/∂q]. The sign of this expression is determined by the sign of the term

in the second square bracket, where Gi(si) > 0 and G′
i(si) < 0, for si ∈ (smi , s

M
i ),

as mentioned earlier. From (3.4) and (3.5), we have the following: (a) For q = θ,

∂Gi(si)/∂θ = hi + bi > 0 and ∂G′
i(si)/∂θ = 0; therefore, ∂ϕi(si, sj)/∂θ > 0. (b)

For q = pi, ∂Gi(si)/∂pi = θ > 0 and ∂G′
i(si)/∂pi = 0; therefore, ∂ϕi(si, sj)/∂pi >

0. (c) For q = hi, ∂Gi(si)/∂hi = θ − si − E[(w − si)
+] = −E[(si − w)+] < 0

and ∂G′
i(si)/∂hi = −F (si) < 0; therefore, ∂ϕi(si, sj)/∂hi < 0. (d) For q = bi,

∂Gi(si)/∂bi = −E[(w − si)
+] < 0 and ∂G′

i(si)/∂bi = F̄ (si) > 0, so the term in the

second square bracket of the numerator becomes F̄ (si)[(hi+pi)θ−hisi]−hiE[(w−si)+].
This expression equals piθ > 0, for si = 0, goes to zero as si → ∞, and its derivative

with respect to si is −f(si)[(hi+pi)θ−hisi] < 0. Hence, it is positive and decreasing,

implying that ∂ϕi(si, sj)/∂bi > 0.

Proof of Theorem 3.3. (i) By Theorem 3.2, under (3.18), s∗i (sj) is increasing in sj

and is the unique solution of (3.14), for i = 1, 2. Moreover, from Proposition 3.1,

s∗i (sj) is bounded from above and below by sMi and smi , respectively, for i = 1, 2.

Therefore, the two best response functions cross each other at least at one point, as

shown in Figure 3.2. Each point satisfies (3.14) for i = 1, 2.

(ii) By Theorem 3.2, s∗i (sj) is increasing in θ, pi, and bi and decreasing in hi.

Moreover, it is increasing in sj, where s
∗
j(si) is itself increasing in θ, pj and bj, and

decreasing in hj, implying the result.

(iii) By Theorem 4 in Cachon and Zhang (2006), if the best response mapping is

a contraction on the entire strategy space, there is a unique Nash equilibrium. For

a two-player game, this condition reduces to the requirement that the absolute value

of the derivative of the best response function of each player must be less than one.

In our case, this derivative is positive, so the condition further reduces to (3.23).

Proof of Proposition 3.2. By Theorem 3.3, if condition (3.18) holds, there ex-

ists at least one pure-strategy Nash equilibrium. Consider an arbitrary equilibrium

(sei , s
e
j). Both s

e
i and s

e
j satisfy the first-order condition (3.19), i.e., ϕi(s

e
i , s

e
j) = 0 and
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ϕj(s
e
j , s

e
i ) = 0. Because of symmetry, ϕi(x, y) = ϕj(x, y) = ϕ(x, y), so the first-order

conditions can be written as ϕ(sei , s
e
j) = (F̄ (sej) + F̄ (sei ))G

′(sei ) + f(sei )G(s
e
i ) = 0 and

ϕ(sej , s
e
i ) = (F̄ (sei ) + F̄ (sej))G

′(sej) + f(sej)G(s
e
j) = 0.

Suppose that (sei , s
e
j) is asymmetric, where without loss of generality sej > sei .

If condition (3.18) holds, then ϕ(x, y) is decreasing in x, and since sej > sei , we

have that ϕ(sej , s
e
j) < ϕ(sei , s

e
j), where ϕ(s

e
j , s

e
j) = (F̄ (sej) + F̄ (sej))G

′(sej) + f(sej)G(s
e
j).

Moreover, noting that F̄ (sej) < F̄ (sei ) since s
e
j > sei , and G

′(sej) < 0 since from (3.17)

sej ∈ (smj , s
M
j ), we have that ϕ(sej , s

e
i ) < ϕ(sej , s

e
j). To summarize, sej > sei implies that

ϕ(sej , s
e
i ) < ϕ(sej , s

e
j) < ϕ(sei , s

e
j) which further implies that the first-order conditions,

ϕ(sei , s
e
j) = 0 and ϕ(sej , s

e
i ) = 0, cannot both hold. Therefore, (sei , s

e
j), s

e
j > sei , cannot

be a pure-strategy equilibrium, so all equilibria are symmetric, proving (i) and (ii).

For any symmetric equilibrium (se, se), the first-order conditions reduce to the

single condition ϕ(se, se) = ϕ̂(se) = 2F̄ (se)G′(se) + f(se)G(se) = 0, which can be

rewritten as (3.24). If condition (3.26) holds, where

∂ϕ̂(s)

∂s
= 2F̄ (s)G′′(s) + f ′(s)G(s)− f(s)G′(s), (B.1)

then ϕ̂(s) is decreasing in s, and since ϕ̂(0) > 0, the first-order condition (3.24) has

a unique solution, implying (iii). Note that, when sei = sej = se, the expected average

demand share of each supplier is 50% of the total demand, so his payoff is given by

(3.25).

Proof of Theorem 3.4. Figure B.1 shows a partition of the (si, sj) space into four

regions: A, B, C, and D, demarcated by smi , s
M
i , smj , and s

M
j . The diagonal curves

traversing the regions represent contour lines along which the expected average de-

mand shares of the suppliers are constant, i.e., they graphically represent function

πi(si, sj) defined in (3.11), for different demand share values πi ∈ (0, 1) of supplier i.

For any pair (si, sj) in region B or C, including the Nash equilibrium under

competition (sei , s
e
j), which is in region B, there exists a pair on the same contour

line as (si, sj) that belongs in region A or D (depending on whether the line passes

through A or D) and has a higher payoff than (si, sj), because it is closer to smi and

smj , the maximizers of Gi(si) and Gj(sj), respectively. This implies that the optimal
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𝑠𝑠𝑖𝑖

𝑠𝑠𝑗𝑗

𝑠𝑠𝑖𝑖𝑚𝑚 𝑠𝑠𝑖𝑖𝑀𝑀

𝑠𝑠𝑗𝑗𝑚𝑚

𝑠𝑠𝑗𝑗𝑀𝑀

𝐴𝐴 𝐵𝐵

𝐶𝐶 𝐷𝐷

𝜋𝜋𝑖𝑖 < 1/2
𝜋𝜋𝑖𝑖 >1/2

(𝑠𝑠𝑖𝑖𝑒𝑒 , 𝑠𝑠𝑗𝑗𝑒𝑒)

0
0

Figure B.1: Constant demand-share contour lines πi(si, sj) for different values of
πi ∈ (0, 1).

active basestock level pair (sci , s
c
j) belongs in region A or D, given by the following

expression: 0 ≤ sci ≤ smi and smj ≤ scj < sMj , for (i, j) = (1, 2) or (i, j) = (2, 1). It

also implies (3.36). To see which of these two regions (sci , s
c
j) belongs to, consider the

following.

From (3.28) and (3.29), the first-order conditions ∂Π(si, sj)/∂si = 0, i = 1, 2,

reduce to ψi(si, sj) = 0, i = 1, 2, since the term F̄ (sj)/[F̄ (sj) + F̄ (si)]
2 in (3.28)

is positive. From (3.14) and (3.29), the conditions ψi(si, sj) = 0, i = 1, 2, can be

written as [F̄ (sj) + F̄ (si)]G
′
i(si) + f(si)[Gi(si) − Gj(sj)] = 0, i = 1, 2. At (smi , s

m
j ),

these conditions become ψi(s
m
i , s

m
j ) = f(smi )[Gi(s

m
i ) − Gj(s

m
j )] = 0, i = 1, 2, since

G′
i(s

m
i ) = G′

j(s
m
j ) = 0.

(i) If Gi(s
m
i ) = Gj(s

m
j ), then ψi(s

m
i , s

m
j ) = 0, i = 1, 2, so (smi , s

m
j ) is a solution of

the first-order conditions. If there exists any other solution, say (s′i, s
′
j), where s

′
i ̸= smi

and/or s′j ̸= smj , then from (3.27), Π(s′i, s
′
j) = [F̄ (s′j)Gi(s

′
i) + F̄ (s′i)Gj(s

′
j)]/[F̄ (s

′
j) +

F̄ (s′i)] < [F̄ (s′j)Gi(s
m
i )+F̄ (s

′
i)Gj(s

m
j )]/[F̄ (s

′
j)+F̄ (s

′
i)] = Gi(s

m
i ) = Gj(s

m
j ) = Π(smi , s

m
j ).

Therefore, (smi , s
m
j ) is a global maximizer of Π(s′i, s

′
j).

(ii) If Gi(s
m
i ) < Gj(s

m
j ), then ψi(s

m
i , s

m
j ) < 0 and ψj(s

m
i , s

m
j ) > 0, so neither first-

order condition is satisfied, i.e., (smi , s
m
j ) is not optimal. In fact, any point (smi , sj)

and (si, s
m
j ) does not satisfy the first-order conditions. From our previous analy-

sis, the active basestock level of one supplier must be increased above his myopic

basestock level and the active basestock level of the other supplier must be reduced

below his myopic basestock level. At the optimal active basestock level pair (sci , s
c
j),
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conditions ψi(s
c
i , s

c
j) = 0, i = 1, 2, become [F̄ (scj) + F̄ (sci)]G

′
i(s

c
i) + f(sci)[Gi(s

c
i) −

Gj(s
c
j)] = 0 and [F̄ (scj) + F̄ (sci)]G

′
j(s

c
j) + f(scj)[Gj(s

c
j) − Gi(s

c
i)] = 0. Suppose that

smi < sci < sMi , 0 ≤ scj < smj . Then, G′
i(s

c
i) < 0, G′

j(s
c
j) > 0, and the above con-

ditions imply that Gi(s
c
i) > Gj(s

c
j). Then, from (3.27), Gi(s

m
i ) < [F̄ (smj )Gi(s

m
i ) +

F̄ (smi )Gj(s
m
j )]/[F̄ (s

m
j )+F̄ (s

m
i )] = Π(smi , s

m
j ) < Π(sci , s

c
j) = [F̄ (scj)Gi(s

c
i)+F̄ (s

c
i)Gj(s

c
j)]

/[F̄ (scj) + F̄ (sci)] < Gi(s
c
i); however, this is impossible, since Gi(s

m
i ) > Gi(s

c
i). There-

fore, smi < sci < sMi , 0 ≤ scj < smj cannot be true, so it must be the case that

0 ≤ sci < smi , s
m
j < scj < sMj . This implies that G′

i(s
c
i) > 0, G′

j(s
c
j) < 0, and

Gi(s
c
i) < Gj(s

c
j). Moreover, from (3.27), Gi(s

c
i) < Gi(s

m
i ) < Π(smi , s

m
j ) < Π(sci , s

c
j) <

Gj(s
c
j) < Gj(s

m
j ).

Proof of Theorem 3.5. (i) From Theorem 3.4, the assumption Gi(s
m
i ) < Gj(s

m
j )

implies that sci ∈ [0, smi ) and s
c
j ∈ (smj , s

M
j ). As mentioned in the proof of Theorem 3.4,

the first-order conditions ∂Π(si, sj)/∂si = 0, i = 1, 2, reduce to ψi(si, sj) = 0, i = 1, 2,

which can be written as −G′
i(s

c
i)/f(s

c
i) = [Gi(s

c
i)−Gj(s

c
j)]/[F̄ (s

c
j) + F̄ (sci)], i = 1, 2,

implying (3.41). If conditions (3.39) hold, then from (3.30), ψi(si, sj) is decreasing in

si, i = 1, 2. There are two cases to consider.

Case (i-1): If ψi(0, s
c
j) > 0, equations ψi(si, sj) = 0, i = 1, 2, have a unique

solution (sci , s
c
j), satisfying (3.40), with sci ∈ (0, smi ) and sj ∈ (smj , s

M
j ). Condi-

tions (3.39) also imply that at (sci , s
c
j), ∂

2Π(sci , s
c
j)/∂s

2
i < 0, i = 1, 2. From (3.28),

(3.29), (3.31): ∂2Π(sci , s
c
j)/∂si∂sj = {[−fj(scj)ψi(s

c
i , s

c
j)+F̄ (s

c
j)∂ψi(s

c
i , s

c
j)/∂sj][F̄ (s

c
j)+

F̄ (sci)]
2 +2[F̄ (scj) + F̄ (sci)]f(s

c
j)F̄ (s

c
j)ψi(s

c
i , s

c
j)}/[F̄ (scj) + F̄ (sci)]

4 = 0, since at (sci , s
c
j),

ψi(s
c
i , s

c
j) = 0, from (3.29) and (3.40), and ∂ψi(s

c
i , s

c
j)/∂sj = 0, from (3.31) and (3.41).

Therefore, the determinant of the Hessian at (sci , s
c
j) satisfies:

[∂2Π(sci , s
c
j)/∂s

2
i ][∂

2Π(sci , s
c
j)/∂s

2
j ]− [∂2Π(sci , s

c
j)/∂si∂sj]

2 > 0

So, (sci , s
c
j) is a local maximum of Π(si, sj); however, since equations ψi(s

c
i , s

c
j) =

0, i = 1, 2, have a unique solution, (sci , s
c
j) is a global maximum.

Case (i-2): If ψi(0, s
c
j) ≤ 0, then Π(si, sj) is decreasing in si, for si ≥ 0, implying

that sci = 0 and scj uniquely satisfies the first-order condition ∂Π(0, sj)/∂sj = 0, which

reduces to (3.42).
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(ii) We have that 0 = ψj(s
c
i , s

c
j) < ϕj(s

c
i , s

c
j) < ϕj(s

e
i , s

c
j), where the first equality

holds from (3.40) and (3.41), the first inequality holds from (3.29), and the last

inequality holds from (3.16) and the fact that sei > sci from Theorem 3.4 (ii). From

(3.18), ϕj(si, sj) is decreasing in sj, and since ϕj(s
e
i , s

c
j) > 0, in order for ϕj(s

e
i , s

e
j) = 0

to hold, it must be that sej > scj.

Proof of Proposition 3.3. (i) The proof follows from Theorem 3.2. First, note that

if f(w) is given by (3.46), f ′(w) < 0; therefore, condition (3.18) immediately holds.

To solve equation (3.19), it is sufficient to set the numerator of the right-hand-side of

(B.8) at zero, i.e., solve (ρi − λsi)e
λsj − (eλsi − βi) = 0. For convenience, we define

z = βi + ρie
λsj and m = eλsj and rewrite the above equation as eλsi + mλsi = z,

or equivalently m (z/m− λsi) e
−λsi = 1. If, in addition, we set u = z/m − λsi

or si = −(mu − z)/(λm), the above equation can be rewritten as ueu = ez/m/m.

Finally, by setting ueu = ez/m/m = k, this equation further reduces to ueu = k.

From property (ii) of the Lambert W function, the latter equation has a unique

solution given by W (k) = u. Back substituting k, u,m, and z yields (3.49). (ii) The

bounds in (3.50) follow directly from (3.7), (3.8), (3.46), and (3.49).

Proof of Proposition 3.4. The proof follows from Theorem 3.3. Firstly, recall from

the proof of Proposition (3.3) that if f(w) is given by (3.46), condition (3.18) immedi-

ately holds, and the solution of equation (3.19) is obtained by solving (ρi−λsi)e
λsj −

(eλsi − βi) = 0, which can be rewritten as (3.51). To verify condition (3.23), we use

property (iii) of the Lambert W function to compute the first derivative of s∗i (sj) as

follows:

∂s∗i (sj)

∂sj
=
W
(
eρi−λsj+βie

−λsj
)
− βie

−λsj

W
(
eρi−λsj+βie

−λsj

)
+ 1

.

Clearly, ∂s∗i (sj)/∂sj < 1, since −βie−λsj < 1, hence the best response is a contraction

mapping on the entire strategy space.

Proof of Proposition 3.5. The proof follows from Theorem 3.4 and Theorem 3.5.

First, note that if f(w) is given by (3.46), smi = ln(βi)/λ, from (3.7), and Gi(s
m
i ) =

hi(ρi − ln(βi))/λ, from (B.4). Using the last equality, assumption (3.54) implies that
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Gi(s
m
i ) < Gj(s

m
j ), which, from Theorem 3.4 (ii), further implies that 0 ≤ sci < smi

and smj < scj < sMj . Therefore, scj > smj > 0 and sci ≥ 0.

Also note that ψi(si, sj) in (B.9) is the product of functions e−λ(si+sj) and Li(si, sj),

where:

Li(si, sj) = eλsj [hi(ρi − λsi)− hj(ρj − λsj)]−
[
hi(e

λsi − βi) + hj(e
λsj − βj)

]
.

The first function is positive and decreasing in si. Li(si, sj) is also decreasing in si,

since ∂Li(si, sj)/∂si = −[λhi(e
λsi + eλsj)] < 0. Therefore, for values of si for which

Li(si, sj) > 0, ψi(si, sj) is decreasing in si, because it is the product of two positive,

decreasing functions. For values of si for which Li(si, sj) < 0, ψi(si, sj) < 0. This

implies that the condition ψi(si, s
c
j) = 0 has at most one positive solution. There are

two cases to consider.

Case (i): Li(0, s
c
j) > 0. In this case, the condition ψi(si, s

c
j) = 0 has one positive

solution sci > 0, and therefore ∂Π(sci , s
c
j)/∂si = 0. To show this, assume that the

equations ψi(si, sj) = 0, i = 1, 2, have a unique solution (sci , s
c
j), where s

c
i > 0 (recall

that scj > 0 by assumption (3.54)). Setting ψi(si, sj) = ψj(si, sj) = 0 in (B.9) yields:

eλs
c
j [hi(ρi−λsci)−hj(ρj −λscj)] = eλs

c
i [hj(ρj −λscj)−hi(ρi−λsci)]. This equality holds

only if the expressions in both square brackets of (B.9) are zero, yielding (3.55) and

(3.56). Substituting scj from (3.55) into (3.56) yields:

hiβi + hjβj − (hie
λsci + hje

(∆p+hiλs
c
i )/hj) = 0.

Note that the left-hand side of the above equation is Li(s
c
i , s

c
j) which, seen as a function

of sci , is decreasing in s
c
i , as also mentioned earlier. For this equation to have a positive

solution, it must be positive at sci = 0, which implies that ∆p < hj ln(K). Reversing

the arguments and assuming that ∆p < hj ln(K), leads to the conclusion that the

equations ψi(si, sj) = 0, i = 1, 2, have a unique solution (sci , s
c
j), where s

c
i , s

c
j > 0.

Case (ii): Li(0, s
c
j) ≤ 0. In this case, the condition ψi(si, s

c
j) = 0 has a zero

solution or no solution, and therefore sci = 0 and ∂Π(sci , s
c
j)/∂si ≤ 0. To see this, note

that if ∆p ≥ hj ln(K), then Li(0, s
c
j) ≤ 0 and therefore the equation ψi(si, s

c
j) = 0

either has a zero solution or no solution, as mentioned earlier. In this case, sci = 0 and
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scj uniquely satisfies Lj(0, s
c
j) = 0. The solution of this equation is given by (3.57).

Again, if we reverse the arguments and substitute scj into the inequality Li(0, s
c
i) ≤ 0,

leads to the condition ∆p ≥ hj ln(K).

Proof of Theorem 3.6. The bounds in (3.66) can be derived as in the proof of

Proposition 3.1.

The proof of (i) and (iii) are similar to the corresponding assertions in Theorem

3.2.

To prove (ii), consider the first derivatives of ϕi(s) given by:

∂ϕi(s)

∂si
=
∏
k ̸=i

F̄ (sk))G
′′
i (si) +

∑
l ̸=i

∏
k ̸=l,i

F̄ (sk)(F̄ (si)G
′′
i (si) + f ′(si)Gi(si)), (B.2)

∂ϕi(s)

∂sj
= −f(sj)[

∏
k ̸=j,i

F̄ (sk)G
′
i(si) +

∑
l ̸=j,i

∏
k ̸=l,j,i

F̄ (sk)(F̄ (si)G
′
i(si) + f(si)Gi(si))],

(B.3)

for j ̸= i. The derivative of s∗i (s−i) with respect to sj is given by the fraction in

(3.68) by using implicit differentiation. The denominator of that fraction is negative

by condition (3.66) and the numerator is positive. To see this, set ϕi(s) = 0 and

substitute [F̄ (si)G
′
i(si) + f(si)Gi(si)] from (3.64) into (B.3). The result is:

∂ϕi(s
∗
i (s−i), s−i)

∂sj
= −

∏
k ̸=j,i

F̄ (sk)f(sj)G
′
i(s

∗
i (s−i))[1−

∑
l ̸=j,i

∏
k ̸=l,j,i F̄ (sk)F̄ (sj)∑

l ̸=i

∏
k ̸=l,i F̄ (sk)

],

for j ̸= i. The above expression is positive, because G′
i(s

∗
i (s−i)) < 0 and the term

inside the square brackets is positive.

Expressions for exponentially distributed demand

If f(w) is given by (3.46), expressions (3.4), (3.5), (3.7), (3.10), (3.14), and (3.29)

become:

Gi(si) =
hi
(
ρi − λsi + 1− βie

−λsi
)

λ
, (B.4)

G′
i(si) = −hi

(
1− βie

−λsi
)
, (B.5)
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smi =
ln(βi)

λ
, (B.6)

Πi(si, sj) =
hi
(
ρi − λsi + 1− βie

−λsi
)
eλsi

λ (eλsi + eλsj)
, (B.7)

ϕi(si, sj) =
hi
[
(ρi − λsi)e

λsj − (eλsi − βi)
]

eλ(si+sj)
. (B.8)

ψi(si, sj) =
eλsj [hi(ρi − λsi)− hj(ρj − λsj)]−

[
hi(e

λsi − βi) + hj(e
λsj − βj)

]
eλ(si+sj)

. (B.9)

Moreover, from (3.8), (B.4), and (B.6), we have:

sMi =
ρi + 1 +W

(
−βie−(ρi+1)

)
λ

, (B.10)

Gi(s
m
i ) =

hi (ρi − ln(βi))

λ
. (B.11)



Appendix C

Chapter 4 Supplemental Material

Proof of Theorem 4.1. In the single-period problem, clearly, the optimal selection

policy is the revenue-greedy policy, according to which active buyers are served in

descending order of their revenue rate. Under this policy, the expected profit function

G(y) = E [g(y)] for any order quantity y ∈ B0 is given by (4.13). The first-order

difference of G(y), denoted by G1(y), is:

G1(y) = G(y)−G(y − 1) =
n∑

i=y

f(i−1)(y − 1)q(i)r(i) − c, y ∈ B, (C.1)

The second-order difference of G(y), denoted by G2(y), is:

G2(y) = G1(y + 1)−G1(y) =
n∑

i=y

(
f(i−1)(y)− f(i−1)(y − 1)

)
q(i)r(i), (C.2)

for y ∈ {1, . . . , n− 1}. Using conditioning, f(i)(y) can be written as follows:

f(i)(y) =
i∑

j=y

f(j−1)(y − 1)q(j)

n−1∏
k=j+1

q̄(k), i ≥ y ∈ B.

156
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Substituting f(i−1)(y − 1) from the above expression into (C.2) yields:

G2(y) =
n∑

i=y

[(
i−1∑
j=y

f(j−1)(y − 1)q(j)

n−1∏
k=j+1

q̄(k)

)
− f(i−1)(y − 1)

]
q(i)r(i),

where y ∈ {1, . . . , n− 1}. Collecting terms and rearranging yields:

G2(y) =
n∑

i=y

f(i−1)(y − 1)q(i)
(
η(i) − r(i)

)
, (C.3)

for y ∈ {1, . . . , n− 1}, where η(i) is given by following recursion:

η(i) = q(i+1)r(i+1) + q̄(i+1)η(i+1), i = 1, . . . , n− 1, and η(n) = 0. (C.4)

Next, we show by induction that r(i) > η(i), i = 1, . . . , n. Clearly, r(n) > η(n) = 0.

For i = 1, . . . , n − 1, assume that r(i+1) > η(i+1). Then, r(i) > r(i+1) = q(i+1)r(i+1) +

q̄(i+1)r(i+1) > q(i+1)r(i+1) + q̄(i+1)η(i+1) = η(i), where the first inequality follows from

(4.14) and the second follows from the induction hypothesis. Because r(n) > η(n), i =

y, . . . , n, all the terms in (C.3) are negative, and hence G2(y) < 0. Therefore, G(y) is

concave and attains a unique maximum at ym = argminy∈{0,...,n−1} {G1(y + 1) ≤ 0}
given by (4.15).

Proof of Proposition 4.1. To show that ym(α′) ≥ ym(α) for any two satisfaction

state vectors α′ and α such that α′ ≥ α, it suffices to show that ym(α′) ≥ ym(α) for

α′ and α such that α′
j = 1 and αj = 0, for some j ∈ B, and α′

i = αi, i ̸= j. To simplify

notation, let f ′
(k)(·) and f(k)(·) denote the p.m.f. of D(k)(α

′) and D(k)(α), respectively.

To show that ym(α′) ≥ ym(α), it suffices to show that G′
1(y) ≥ G1(y), where G

′
1(y)

andG1(y) denote the first-order differencesG1(α
′, y) andG1(α, y), respectively. From

(C.1), and assuming that α′
j = 1 and αj = 0, for some j ∈ B, and α′

i = αi, i ̸= j, we

define the differce ∆G1 = G′
1(y)−G1(y) and we have:

∆G1 =

{
∆q(j)f(j−1)(y − 1)r(j) +

∑n
i=j+1 (f

′
(i−1)(y − 1)− f(i−1)(y − 1))q(i)r(i), j ≥ y,

0, j < y,

(C.5)
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∆G1 = 1{j≥y}

[
∆q(j)f(j−1)(y − 1)r(j) +

n∑
i=j+1

(f ′
(i−1)(y − 1)− f(i−1)(y − 1))q(i)r(i),

]

We will only consider the case j ≥ y because, for j < y, ∆G1 = 0. Let D(i)\{j} =∑i
k=1,k ̸=j d(k) and let f(i)\{j}(k) denote the p.m.f. of D(i)\{j}. Clearly, f(i)\{j}(k) =

f(i)(k), i < j, and

f(j)\{j}(k) = f(j−1)(k), (C.6)

f(i)\{j}(k) = f(i−1)\{j}(k − 1)q(i) + f(i−1)\{j}(k)q̄(i), i > j. (C.7)

We can express the p.m.f.’s in (C.5) as follows: f ′
(i)(y − 1) = f(i)\{j}(y − 2)q′(j) +

f(i)\{j}(y− 1)q̄′(j) and f(i)(y− 1) = f(i)\{j}(y− 2)q(j) + f(i)\{j}(y− 1)q̄(j), i ≥ j. Substi-

tuting the difference of the above expressions into (C.5), also substituting f(j−1)(k)

from (C.6), yields:

∆G1 = ∆q(j)(f(j)\{j}(y − 1)r(j) +
n∑

i=j+1

(f(i−1)\{j}(y − 2)− f(i−1)\{j}(y − 1))q(i)r(i)).

Substituting f(i−1)\{j}(y − 1) from (C.7) into the above expression, unfolding the

recursion, and collecting terms yields:

∆G1 = ∆q(j)(f(j)\{j}(y − 1)(r(j) − η(j)) +
n∑

i=j+1

f(i−1)\{j}(y − 2)q(i)(r(i) − η(i))),

where η(i) is given by (C.4). As was shown in the proof of Proposition 1, r(i) >

η(i), i ∈ B; therefore, all the terms in the above equation are positive, and hence

∆G1 > 0.

Proof of Proposition 4.2. Consider the states α′ = (α′
1, α

′
2, . . . , α

′
n) and α =

(α1, α2, . . . , αn), such that α′
j = αj, ∀j ̸= i, and, α′

i = 0, αi = 1, for some i ∈ B,
then α′ ≥ α. Consider two sample paths, a nominal path starting from α and

following the optimal ordering policy and buyer selection policy, and an alternative

path starting from α′ and following the actions of the nominal path. If buyer i is
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active in the nominal path, she is also active in the alternative path. If the firm

serves (does not serve) this buyer in the nominal path, it also serves (does not serve)

her in the alternative path. Therefore, her satisfaction state becomes 1 (0) in both

sample paths, and the two paths become identical thereafter. If buyer i is inactive

in the nominal path, she is either also inactive or active in the alternative path. In

the first case, her satisfaction state in both sample paths remains unchanged and the

argument is repeated in the next period. In the second case, her satisfaction state in

the nominal path remains unchanged, i.e., 0. In the alternative path, if there is no

excess capacity, the firm does not serve the buyer. In this case, her satisfaction state

becomes 0, and the total satisfaction states in the two sample paths become identical.

If there is excess capacity, the firm serves the buyer, receiving a reward ri, and the

satisfaction state of the buyer remains unchanged. In this case, the satisfaction state

of the buyer in both sample paths remains unchanged and the argument is repeated.

To summarize, the satisfaction state of buyer i in the alternative path either becomes

the same as that in the nominal path or is greater than that in the nominal path.

Proof of Proposition 4.3. From (4.1), γi ≥ γj implies qi(1)qj(0) ≥ qi(0)qj(1),

which implies P (di(1) + dj(0) = 2) ≥ P (di(0) + dj(1) = 2), which implies P (di(1) +

dj(0) ≥ 2) ≥ P (di(0) + dj(1) ≥ 2). From (4.2), γ̄i ≥ γ̄j implies q̄i(1)q̄j(0) ≤
q̄i(0)q̄j(1), which implies P (di(1) + dj(0) = 0) ≤ P (di(0) + dj(1) = 0), which im-

plies P (di(1) + dj(0) ≥ 1) ≥ P (di(0) + dj(1) ≥ 1). Therefore, γi ≥ γj and γ̄i ≥ γ̄j

imply di(1) + dj(0)≥stdi(0) + dj(1).

Proof of Proposition 4.4. If y(α) = n−1, ∀α, the buyer selection policy matters

only when all buyers are active. In this case, the question is not who to select but

who to leave out. Suppose that when all buyers are active, buyer j has the lowest

priority and is left out. In this case, she becomes dissatisfied, and all other buyers

become satisfied, i.e., the satisfaction state vector becomes αj = (α1, . . . , αn : αj =

0, αk = 1, k ∈ B \ {j}). Once in state αj, the satisfaction state vector will remain

in αj until buyer j is served. Given that she has the lowest priority, this will happen

only if she is active and at least one of the other buyers is inactive. The probability

of this event is qj(0)F
1
−i(n− 2) = qj(0)[1−

∏
k∈B\{i} qk(1)]. When this event happens,
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buyer j becomes satisfied and all other buyers remain satisfied, i.e., the satisfaction

state vector becomes α1 = (α1, . . . , αn : αk = 1, k ∈ B). Once in state α1, the

satisfaction state will remain in α1 until all buyers are active again and, as before,

buyer j is not selected. The probability of this event is
∏

k∈B qk(1). When this event

happens, buyer j becomes dissatisfied, all other buyers remain satisfied, and the

cycle repeats. Therefore, when buyer j has the lowest priority, the buyer satisfaction

state vector is a Markov chain with two states, αj and α1, and transition probabilities

pα1αj
=
∏

k∈B qk(1) and pαjα1 = qj(0)[1−
∏

k∈B\{i} qk(1)]. The stationary probabilities

of these two states are παj
=
∏

k∈B qk(1)/(
∏

k∈B qk(1)+ qj(0)[1−
∏

k∈B\{i} qk(1)]) and

πα1 = 1 − παj
. Every time the Markov chain makes a transition to state αj, buyer

j is not served, and every time it makes a transition to state α1, buyer j is served.

Therefore, the expected contribution of buyer j to the firm’s revenue is πα1qj(1)rj =

(1− παj
)qj(1)rj. The expected contribution of the other buyers, who always remain

satisfied, is
∑

k∈B\{i} qk(1)rk. Thus, the total average expected profit of the firm when

buyer j has the lowest priority is
∑

k∈B\{i} qk(1)rk+(1−παj
)qj(1)rj−(n− 1) c, which,

after some algebraic manipulations, can be rewritten as (4.18), where zj is given by

(4.17) for i = j. So, if the firm wants to maximize its average expected profit, it must

assign the lowest priority to the buyer with the smallest value of zi. Thus, zi is the

index, and the optimal average expected profit is given by (4.18).

Proof of Theorem 4.2. When n = 2, buyer selection matters only when y = 1 and

both buyers are active. In this case, if the firm selects buyer i over j, the satisfaction

state vector becomes (αi = 1, αj = 0), regardless of its initial value, implying that the

optimal selection policy is an index policy. Assume for the moment that the optimal

ordering policy is an FOQ policy, i.e., y∗(α) = yz, where yz = 0, 1, or 2. If yz = 1,

then from Proposition 4.4, the optimal selection policy is an index policy uz with

index for buyer i given by (4.17), which for n = 2 reduces to (4.22). If yz = 0 or 2,

buyer selection is irrelevant as was mentioned earlier and any policy including uz is

optimal.

Next, we will show that the optimal ordering policy satisfies the monotonicity

property in Conjecture 1, namely, y∗(α′) ≥ y∗(α),α′ ≥ α, and then, we will show

that in fact y∗(α) = yz, where yz = 0, 1, or 2. To this end, suppose that the firm uses
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index policy uz and without loss of generality assume that zi > zj, i ̸= j ∈ B = {1, 2},
i.e., buyer i has priority over j. Then, the optimality equation (4.10) can be written

as Π = maxy∈B0{Ed[g(y,u
∗)] +G(α, y,u∗)}, where:

Ed[g(y,u
∗)] = 1{y ̸=0}(riqi(αi)− c)+1{y=2}(rjqj(αj)− c)+1{y=1}rj q̄i(αi)qj(αj), (C.8)

G(α, y,u∗) = Ed[V (Φ(α,u∗d))]− V (α). (C.9)

Consider the optimal order quantity when both buyers are dissatisfied, y∗(0, 0).

There are two cases.

Case 1: y∗(0, 0) = 0. In this case, state α = (0, 0) is absorbing. This case arises

if the firm cannot be profitable in any state, so it is better off setting y∗(α) = 0, ∀α,

and hence Π = 0. Clearly, the monotonicity property holds, and in fact, the optimal

ordering policy is an FOQ policy with FOQ yz = 0.

Case 2: y∗(0, 0) > 0. In this case, the firm can be profitable is some states,

so Π > 0. We will show that y∗(α) > 0,α ̸= (0, 0). To this end, assume that

the reverse is true, i.e., y∗(α) = 0, for some α ̸= (0, 0). There are three sub-

cases to consider. Subcase 2-i: α = (1, 1), so G(α, 0,u∗) = q1(1)q̄2(1)(V (0, 1) −
V (1, 1))+ q̄1(1)q2(1)(V (1, 0)−V (1, 1))+ q1(1)q2(1)(V (0, 0)−V (1, 1)). Subcase 2-ii:

α = (0, 1), so G(α, 0,u∗) = q2(1)(V (0, 0) − V (0, 1)). Subcase 2-iii: α = (1, 0),

so G(α, 0,u∗) = q1(1)(V (0, 0) − V (1, 0)). In all subcases, Ed [g(0,u
∗)] = 0 by

(C.8) and G(α, 0,u∗) ≤ 0 by Proposition 4.2, which means that the firm makes

no profit or even incurs losses. However, this is impossible, given that the as-

sumption y∗(0, 0) > 0 implies Π > 0; therefore, y∗(α) > 0,α ̸= (0, 0). To show

that y∗(α′) ≥ y∗(α),α′ ≥ α, it suffices to show that argmaxy∈{1,2}{Ed[g(y,u) +

G(α′, y,u∗)]} ≥ argmaxy∈{1,2}{Ed[g(y,u) + G(α, y,u∗)]}, α′ ≥ α. To this end, we

must show that ∆α′g(u) ≥ ∆αg(u) and ∆G(α′,u∗) > ∆G(α,u∗),α′ ≥ α, where

∆αg(u) = Ed [g(2,u)− g(1,u)] and ∆G(α,u∗) = G(α, 2,u∗)−G(α, 1,u∗). Clearly,

∆αg(u) = rjqi(ai)qj(aj) − c from (C.8) and ∆G(α,u∗) = qi(αi)qj(aj)(V (1, 1) −
V (1, 0)) from (C.9), which implies the result.

To complete the proof, note that any ordering policy satisfying y(α′) ≥ y(α), α′ ≥
α, drives αt to an absorbing state (or set of two states) that can also be reached under
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an FOQ policy. Specifically, if y(α) = 0, 1 or 2, ∀α, then αt is absorbed in state

α = (0, 0), the set of states α = (1, 0) or state α = (1, 1), respectively. Therefore,

the initial assumption that y∗(α) = yz, where yz = 0, 1, or 2 is verified.

To find the exact value of yz, it suffices to compare the average expected profit

Πy,uz
under index policy uz and FOQ policy y(α) = y, ∀α, for y = 0, 1, 2. Clearly,

if y = 0, both buyers are always dissatisfied and Π0,uz
= 0. Similarly, if y = 2, both

buyers are always satisfied and Π2,uz
= R− 2c, where R is given by (4.19). Finally, if

y = 1, Π1,uz
= R−Rj − c from (4.18), where Rj is given by (4.20). Moreover, it can

be shown that if Π1,uz
< Π0,uz

= 0, then Π2,uz
< Π1,uz

< Π0,uz
. Therefore, yz = 0

if Π0,uz
> Π1,uz

, yz = 2 if Π2,uz
> Π1,uz

, and yz = 1 if Π1,uz
> max(Π0,uz

,Π2,uz
),

leading to the conditions in Table 4.1.

Proof of Proposition 4.5. Substituting φ(αi, di, ui) and Φ(α,d,u) from (4.7)–(4.8)

and V̂ λ(α) and Π̂λ from (4.27)–(4.28) into (4.26), and simplifying terms, yields:

∑
i∈B

Π̂λ
i + V̂ λ

i (αi) = E
d

[
max
u∈U(d)

{∑
i∈B

(ri − λ)ui + V̂ λ
i (ui + (1− di)αi)

}]
.

Interchanging summation with maximization and expectation in the r.h.s. yields

(4.29).

Proof of Proposition 4.6. Carrying out the expectation in (4.29) yields:

Π̂λ
i + V̂ λ

i (αi) = max
ui∈{0,1}

{
qi(αi)[(ri − λ)ui + V̂ λ

i (ui)]
}
+ q̄i(αi)V̂

λ
i (αi). (C.10)

Let hi(ui) denote the term inside the maximization as a function ui. Then hi(1) −
hi(0) = qi(αi) (ri − λ)+ V̂ λ

i (1)− V̂ λ
i (0)

)
. Substituting V̂ λ

i (1) and V̂
λ
i (0) from (4.31)

yields the difference: hi(1)− hi(0) = qi(αi)[ri − λ) + (ri − λ)+γi/(1− γi)]. If ri > λ,

this difference is positive which implies that ui = 1 is optimal. If ri ≤ λ, the difference

is negative which implies that ui = 0 is optimal. In both cases, Π̂λ
i given by (4.32)

and V̂ λ
i (1) and V̂

λ
i (0) given by (4.31) verify (C.10) and therefore (4.29).

Proof of Proposition 4.7. From (4.24), (4.28) and (4.32) we have: Π̂y,λ = (λ −
c)y(α)+

∑
i∈B (ri − λ)+qi(1). Clearly, Π̂

y,λ is continuous, piecewise linear, and convex
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in λ, with (∂Π̂y,λ/∂λ)
+
= y(α)−

∑i−1
k=1 q(k)(1) for r(i) ≤ λ < r(i−1), i = 1, . . . , n + 1,

where r0 → ∞, by convention. The value of λ that minimizes (4.33), denoted by λ∗,

is the smallest λ for which (∂Π̂y,λ/∂λ)
+
≥ 0, which can be expressed as (4.34).

Proof of Corollary 4.3. If y(α) = n− 1, ∀α, then there are two cases to consider.

Case 1:
∑n

k=1 q(k)(1) > n − 1. From (4.34) and (4.38), i∗ = n, λ∗ = r(n), l
∗
(i) =

r(i) +
(
r(i) − r(n)

)
γ(i)/

(
1− γ(i)

)
> r(i), i = 1, . . . , n − 1, and l∗(n) = r(n). Case 2:∑n

k=1 q(k)(1) ≤ n − 1. From (4.34) and (4.38), i∗ = n + 1, λ∗ = r(n+1) = 0, and

l∗(i) = r(i) + r(i)γ(i)/
(
1− γ(i)

)
= r(i)/

(
1− γ(i)

)
= s(i), i ∈ B. For B = {1, 2}, case 1

yields: l∗(1) > r(1) > r(2) = l∗(2); therefore, the buyer selection policy is revenue-greedy,

which is what we would get if we set l∗(1) = r(1).

Proof of Proposition 4.8. If di = 0, the solution of DP (4.42) is ui = 0, since

ui ≤ di. If di = 1, there are two cases to consider. Case 1: D−i < y(α). In this

case, the term inside the maximization in (4.42) is Ṽ θi
i (0), for ui = 0, and ri+ Ṽ

θi
i (1),

for ui = 1. Clearly, ui = 1 is optimal, because ri + Ṽ θi
i (1) − Ṽ θi

i (0) = θi from (4.41)

and θi > 0, since θi is defined as the subsidy that must be given to the firm to make

it indifferent between selecting vs. not selecting buyer i. Case 2: D−i ≥ y(α).

In this case, the term inside the maximization of (4.42) is Ṽ θi
i (0) for, ui = 0, and

ri−θi+ Ṽ θi
i (1), for ui = 1, which equals Ṽ θi

i (0) from (4.41); therefore, both ui = 0 and

ui = 1 are optimal. This is expected because θi is defined as the subsidy that must

be given to the firm to make it indifferent between selecting vs. not selecting buyer i.

Therefore, in both cases, ui = 1 is optimal. From the above analysis, DP (4.42) for

ui = 1 can be written as follows, after carrying out the expectation and rearranging

terms: Π̃θi
i +qi(αi)Ṽ

θi
i (αi) = qi(αi)[ri+Ṽ

θi
i (1)]F−i(y(α)−1)+Ṽ θi

i (0)F−i(y(α)−1), αi =

0, 1, i ∈ B. This set of equations has multiple solutions. For this reason, we set

Ṽ θi
i (0) = 0 and we write the above expression as follows: Π̃θi

i + qi(αi)Ṽ
θi
i (αi) =

qi(ai)F−i(y(α) − 1)[ri + Ṽ θi
i (1)]. For αi = 0, 1, this expression can be written as

Π̃θi
i = qi(0)F−i(y(α)−1)[ri+ Ṽ

θi
i (1)] and Π̃θi

i = qi(1)F−i(y(α)−1)ri− qi(1)Ṽ θi
i (1)[1−

F−i(y(α) − 1)], respectively. The solution of these equations is given by (4.43) and

(4.44). Substituting the solution into (4.41) yields (4.45).

Proof of Corollary 4.4. If y(α) = n−1, ∀α, stateα1 = (α1, . . . , αn : αk = 1, k ∈ B)
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can be reached under any buyer selection policy. When α1 is reached, F
1
−i(n−2) = 1−∏

k∈B\{i} q(k)(1). From (4.17) and (4.45), this implies that θi(α1) = zi, i ∈ B. Under
the active-constraint index policy, if all buyers are active in state α1, the buyer with

the smallest index, say j, is left out and becomes dissatisfied, and all other buyers re-

main satisfied, i.e., the state becomesαj = (α1, . . . , αn : αj = 0, αk = 1, k ∈ B \ {j}).
In state αj, F

1
−j(n− 2) remains unchanged. From (4.45), this implies that the index

of buyer j remains unchanged, i.e., θj(αj) = θj(α1) = zj. For i ̸= j, F−i(n − 2) =

P (dj(0)+
∑

k∈B\{i,j} dk(1) ≤ n−2) which, from (4.45) and the fact that dj(1) ≥st dj(0),

implies that the index of buyer i becomes larger, i.e., θi(αj) ≥ θi(α1) = zi. There-

fore, in state αj, the buyer with the smallest index is still j. This means that if all

buyers are active in state αj, buyer j is left out and remains dissatisfied, while all

other buyers remain satisfied, i.e., the satisfaction state vector remains αj. On the

other hand, if buyer j is active and at least one of the other buyers is inactive, then

all active buyers, including j, are satisfied, and the satisfaction state vector becomes

α1. This behavior is identical to that under the optimal buyer selection policy given

by Proposition 4.4.
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