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A B S T R A C T   

In rarefied gas dynamics, the Cercignani-Lampis (CL) scattering kernel, containing two accommodation co-
efficients (ACs), namely the tangential momentum and normal energy ones, is widely employed to characterize 
gas-surface interaction, particularly in non-isothermal setups, where both momentum and energy may simul-
taneously be exchanged. Here, a formal and detailed sensitivity analysis of the effect of the CL ACs on the main 
output quantities of several prototype problems, namely the cylindrical Poiseuille, thermal creep and thermo-
molecular pressure difference (TPD) flows, as well as the plane Couette flow and heat transfer (Fourier flow), is 
performed. In each problem, some uncertainties are randomly introduced in the ACs (input parameters) and via a 
Monte Carlo propagation analysis, the deduced uncertainty of the corresponding main output quantity is 
computed. The output uncertainties are compared to each other to determine the flow configuration and the gas 
rarefaction range, where a high sensitivity of the output quantities with respect to the CL ACs is observed. The 
flow setups and rarefaction regimes with high sensitivities are the most suitable ones for the estimations of the 
ACs, since larger modeling and experimental errors may be acceptable. In the Poiseuille and Couette flows, the 
uncertainties of the flow rate and shear stress respectively are several times larger than the input uncertainty in 
the tangential momentum AC and much smaller than the uncertainty in the normal energy AC in a wide range of 
gas rarefaction. In the thermal creep flow, the uncertainty of the flow rate depends on the input ones of both ACs, 
but, in general, it remains smaller than the input uncertainties. A similar behavior with the thermal creep flow is 
obtained in the TPD flow. On the contrary, in the Fourier flow, the uncertainty of the heat flux may be about the 
same or even larger than the input ones of both ACs in a wide range of gas rarefaction. It is deduced that in order 
to characterize the gas-surface interaction via the CL ACs by matching computations with measurements, it is 
more suitable to combine the Poiseuille (or Couette) and Fourier configurations, rather than, as it is commonly 
done, the Poiseuille and thermal creep ones. For example, in order to estimate the normal energy AC within an 
accuracy of 10 %, experimental uncertainties should be less than 4 % in the thermal creep or TPD flows, while 
may be about 10 % in the Fourier flow.   

1. Introduction 

Rarefied gas dynamics are employed in various engineering and 
technological fields, including gaseous microfluidics [1,2], vacuum gas 
technology and pumping [3,4], metrology [5], lubrication [6], porous 
media [7,8] and high-altitude gas dynamics [9,10]. The main unknown 
is the velocity distribution function, which obeys the Boltzmann equa-
tion or some suitable kinetic model equation, while the macroscopic 
quantities of practical interest are obtained by the moments of the 

distribution function. In addition, at the boundaries of the flow config-
uration, some kinetic-type boundary conditions must be specified. More 
specifically, the distribution function of the reflected gas particles is 
expressed with regard to that of the incident ones, which is part of the 
solution. Obviously, the reliable prediction of the gas-surface interaction 
is essential in the accurate solution of the flow setup. 

At the boundaries, the relation between the incident and reflected 
distribution functions, denoted by f(ύ ) and f(υ) respectively, with ύ  and 
υ denoting the corresponding molecular velocity vectors, is expressed by 
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means of the scattering or reflection kernel R(ύ →υ) as [11] 

|υn|f(υ) =
∫

ύ n<0
|ύ n| f(ύ )R(ύ →υ)dύ (1) 

In Eq. (1), ύ n and υn are the components of the associated molecular 
velocities normal to the boundary (υn is always directed into the gas). 
The scattering kernel R(ύ →υ) gives the probability that a particle which 
impinges the wall with velocity [ύ , ύ + dύ ], will reflect back into the 
flow with velocity [υ,υ + dυ]. The scattering kernel must obey certain 
mathematical properties and usually contains one or more free param-
eters, the so-called accommodation coefficients (ACs), which charac-
terize the gas-surface interaction of some property (mass, momentum, 
energy). 

The AC of some property φ is the ratio of the actual flux of this 
property normal to the wall, over the corresponding one, assuming 
complete accommodation at the wall. Mathematically, it is defined as 
[12] 

α(φ) =
∫

ύ n<0|ύ n| f(ύ )φ(ύ )dύ −
∫

υn>0|υn| f(υ)φ(υ)dυ
∫

ύ n<0|ύ n| f(ύ )φ(ύ )dύ −
∫

υn>0|υn| fdif (υ)φ(υ)dυ (2)  

where φ(υ) is some function of υ and fdif is the Maxwellian distribution 
function, characterized by the temperature and velocity of the wall. The 
ACs sometimes are measured directly, but in most cases, they are 
extracted in an indirect manner by comparing measurements with 
computations based on some scattering kernel. 

The gas-surface interaction is a rather complex phenomenon, 
affected by many factors at micro and macroscale levels. The primary 
factors include the surface material and its treatment, as well as the 
molecular mass and structure of the gas species, while other factors, such 
as the gas temperature and boundary shape, may also be important. All 
these factors, which may be present in the momentum and energy 
transfer between the surface and the gas, although not explicitly 
considered, obviously affect the evaluation of the ACs. In general, it is 
expected that the gas-surface interaction becomes less diffusive (more 
specular) as the surface is polished, the molecular mass is reduced and 
the temperature is increased, while the effect of pressure (or number 
density) is minor. These general trends are reported in many gas-surface 
interaction reviews [13,14], although there are several experimental 
and computational studies with contradicting results [15–17]. Despite 
the existing pitfalls and deficiencies, the implementation of scattering 

models with constant or molecular velocity dependent ACs remains the 
most common, straightforward and computationally efficient approach 
to provide reliable boundary conditions in kinetic modeling at meso-
scale level. 

Surely, the most widely employed scattering model, with consider-
able success, is the one proposed by Maxwell [18], mainly for either 
pressure driven isothermal [19–24] and non-isothermal [25] flows or 
purely heat transfer flows [26–28], describing the tangential momentum 
and energy exchange between the gas and the surface respectively. The 
main shortcoming of the Maxwell model is that it contains only one free 
parameter, which remains the same for all accommodation modes, i.e. 
for any φ(υ), and therefore, cannot properly characterize the gas-surface 
interaction in rarefied gas flows with coupled momentum and energy 
transfer. 

The second most widely employed scattering model is the one pro-
posed by Cercignani & Lampis, given by [29] 

R(ύ →υ) = m2|υn|

2πanat(2 − at)(kTw)
2I0

(
m

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − an

√
υnύ n

ankTw

)

× exp

[

−
m
[
υ2

n + (1 − an)ύ 2
n
]

2kTwan
−

m[υt − (1 − at)ύ t ]
2

2kTwat(2 − at)

]

(3) 

In Eq. (3), ύ n and υn are the components of the incident and reflected 
molecular velocity normal to the boundary, while ύ t = [ύ t1, ύ t2] and 
υt = [υt1, υt2] are the corresponding two-dimensional vectors tangential 
to the boundary. Also, m is the molecular mass, k is the Boltzmann 
constant, Tw is the surface temperature and I0(x) = (1/2π)

∫ 2π
0 

exp(x cos ψ) dψ is the modified Bessel function of the first kind and 
zeroth order. The Cercignani-Lampis (CL) model contains two ACs, 
namely αt ∈ [0,2] and αn ∈ [0, 1], which correspond to the tangential 
momentum and normal energy that the molecules exchange with the 
surface during the interaction. By substituting the CL kernel into Eq. (1) 
and the resulting expression into Eq. (2), with φ(υ) = mυt and φ(υ) =

mυ2
n/2, it is deduced, in a straightforward manner, that α(mυt) = αt and 

α
(
mυ2

n/2
)
= αn [30]. Thus, αt and αn have clear physical meaning. Also, 

it is worth noting that if the same manipulation is repeated, with φ(υ) =

mυ2
t /2, it is readily reduced that α

(
mυ2

t /2
)
= at(2 − at) [31], implying 

that when αt is fixed, both the tangential momentum and tangential 
energy accommodation modes are specified. This is probably a pitfall of 
the CL model, since there is no physical reasoning that these two modes 
are somehow connected, but in any case, compared to the Maxwell 
model, the CL kernel is more versatile, since it is possible to distinguish 
between momentum and energy accommodation [32]. In addition, 
back-scattering investigation is feasible [33], plume-like structures of 
re-emitted molecules may be recovered [11] and the exponent in the 
thermomolecular pressure difference (TPD) effect, in the free molecular 
limit, can take values of less than 0.5, which is in agreement with 
experimental data (the free molecular value obtained by the Maxwell 
model is always 0.5 independent of the AC) [34,35]. Thus, the CL kernel 
has been extensively employed to computationally solve non-isothermal 
internal [30,35–41] and external [42–47] rarefied gas flows in a wide 
range of αt and αn in order to investigate the effect of the gas-surface 
interaction on the output quantities. 

In parallel, there has been significant effort to determine the ACs of the 
CL model for a variety of gas-surface combinations by comparing nu-
merical results with experimental data [33,35,36,38,39,48–50]. To 
obtain a unique pair of ACs in a wide range of gas rarefaction, at least two 
different types of flows for the same gas and surface material must be 
examined. Of course, the numerical results should be based on the same 
kinetic formulation, while measurements, ideally, should be performed in 
the same experimental rig. In most cases, fully-developed flows through 
long capillaries of circular or rectangular cross sections are considered 
[19,49,51–59]. First, the tangential momentum AC, αt , is extracted by 
considering fully developed isothermal pressure driven flow. In these 
Poiseuille type flows, the exchange of tangential momentum between gas 

Fig. 1. Poiseuille flow – Uncertainty of reduced flow rate u(GP)/GP vs δ for 
input uncertainty u(αt)/αt = 10%, with at = [0.3,0.5, 1, 1.5,1.7] and an = 1. 
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particles and surrounding surfaces is expected to be much larger than the 
normal energy exchange, which is in agreement with the results obtained 
by the CL model, where the computed flow rate depends only on αt and is 
actually independent of αn. Thus, αt is fixed, while αn remains a free 
parameter. Then, by considering fully-developed temperature driven 
flow, namely thermal creep flow or alternatively TPD (either of them 
depends on both ACs) the normal energy AC, αn, is extracted (αt is kept 
fixed). The matching between experimental and numerical data is based 
in the thermal creep flow on the mass flow rate and in the TPD effect on 
the established downstream to upstream pressure ratio in order to have 
zero net mass flow rate. 

The reported experimental work with rarefied, isothermal, Poiseuille 
type flows is extensive. The mass flow rate is deduced by measuring the 
pressure variation in the upstream and downstream vessels, located at 
the two ends of the long capillary, and employing mass conservation. In 
general, the estimated experimental uncertainties of the mass flow rate 
are small, allowing accurate estimation of αt. For example, uncertainties 
of less than 4.5 % in [52–54], less than 6 % in [49] and less than 0.5 % in 
[59], are reported. 

The corresponding mass flow rate measurements, either in thermal 
creep or TPD, are based on a similar methodology as in pressure driven 

flows, but they are cumbered due to significantly increased experi-
mental complexity and uncertainties. Additional instrumentation is 
needed for the accurate measurement of the imposed temperature 
gradient along the flow. The significant reduction of the mass flow rate 
in the TPD flow as the gas rarefaction decreases and the relatively small 
pressure deviations in TPD, compared to pressure driven flows, require 
more precise instruments and measurements to reduce experimental 
uncertainties. Furthermore, very accurate measurement of the actual 
dimensions of the microchannel cross sections is needed. Certainly, it 
would greatly help to perform experimental work in highly rarefied 
regimes, but in this case, the experimental rig is more sensitive to po-
tential leaks and outgassing, which should be accordingly treated. 

Therefore, the reported experimental work is rather limited, and the 
associated estimated uncertainties are much larger. In particular, un-
certainties of about 10 % and even larger at small values of the rare-
faction parameter are reported in [56] and up to 12 % in [49], while 
uncertainties which may exceed 8 % are reported in the computed 
thermal slip coefficients in [58]. In addition to the experimental diffi-
culties, it is important to note that the dependency of the mass flow rate 
in thermal creep flow or of the pressure ratio in the TPD effect on αn is 
rather weak, particularly for αt close to one or when the flow is in the slip 

Fig. 2. Poiseuille flow – Uncertainty of reduced flow rate u(GP)/GP vs δ for input uncertainty u(αn)/αn = 10%, with an = [0.2, 0.5, 0.9] and at = [0.3,0.5, 1.5,1.7].  
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regime. Thus, although there have been several attempts to extract the 
CL ACs by considering fully-developed pressure and temperature driven 
flows, the results so far are not satisfactory, i.e., it is not possible to 
match corresponding numerical and experimental data in a wide range 
of gas rarefaction, with a unique pair of (αt ,αn). For example, in [48,60] 
the reported values of the CL ACs refer only to the slip regime, while in 
[38,39], two significantly different pairs of (αt ,αn) are deduced in order 
to match measurements and computations in the transition and slip 
regimes. Іt is noted that in [38,39], modeling uncertainties have been 
minimized as much as possible, by solving the linearized Boltzmann 
equation with advanced intermolecular potentials. It seems that in order 
to efficiently extract the CL ACs, either the experimental uncertainties of 
Poiseuille and thermal creep type flows must be further reduced, or 
other combinations of flow setups must be examined. 

Alternative flow combinations may include boundary driven flows 
(e.g. Couette flow) or heat transfer between parallel plates or coaxial 

cylinders (Fourier flow). In particular, in the latter case, the reported 
dependency of the heat flux on both αt and αn is strong in a wide range of 
gas rarefaction including the slip regime [41]. Thus, it may be reason-
able to combine isothermal pressure or boundary driven flows with 
Fourier type flows in order to characterize the tangential momentum 
and normal energy exchange between the gas and the surface via the CL 
model. Other scattering kernels to relate incident and reflected distri-
bution functions are available but they are not easy to use, at least for 
general purposes, because they contain three or more free parameters 
[38,61,62]. 

Based on the above discussion, in the present work, the effect of the 
CL ACs on the overall output quantities of several representative pro-
totype rarefied gas flow and heat transfer problems is quantified by 
conducting a formal sensitivity analysis. The problems include the cy-
lindrical Poiseuille and thermal creep flows and TPD effect, as well as 
the plane Couette and Fourier flows. They are all simulated based on the 
linearized Shakhov (S) kinetic equation [63] with CL boundary condi-
tions. It is noted that although these problems have been solved using 
the CL boundary conditions, so far, a uniform formal sensitivity analysis 
to quantitatively determine the effect of the CL ACs on the output 
quantities has not been performed. This is the objective of the present 
work and it is fulfilled by introducing some uncertainty in αt and αn 
(input parameters) and computing the deduced uncertainty in the main 
output quantity of each problem via the Monte Carlo method (MC) [64, 
65]. Obviously, for a given input uncertainty, as the output uncertainty 
increases, the dependency of the output quantity on αt or αn becomes 
stronger. Identifying the flow configuration and the gas rarefaction 
regime, where the impact of the CL ACs is expected to be more dominant 
is certainly beneficial in future experimental work and in the charac-
terization of targeted gas-surface combinations, as well as in the design 
of systems operating under vacuum conditions. 

The rest of the paper is organized as follows: In Section 2, the kinetic 
formulation (linearized S model with CL boundary conditions) of all 
problems is provided, while in Section 3, the MC uncertainty propaga-
tion analysis is described. In Section 4, the computed uncertainties in the 
output quantities versus the input ones in the whole range of gas rare-
faction are presented and discussed. The output quantities include the 
flow rates in the Poiseuille and thermal creep flows, the exponent in the 
TPD effect, the shear stress in the Couette flow and the heat flux in the 
Fourier flow. Finally, in Section 5, the main concluding remarks are 
outlined. 

Fig. 3. Poiseuille flow – Uncertainty of reduced flow rate u(GP)/GP vs u(αt)/αt , with αt = [0.3,1] and αn = 1 for δ = [10− 2, 1, 10, 50].  

Fig. 4. Couette flow – Uncertainty of dimensionless shear stress u(Π)/Π vs δ for 
input uncertainty u(αt)/αt = 10%, with at = [0.3,0.5, 1, 1.5,1.7] and an = 1. 
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2. Kinetic formulation of the examined prototype flow setups 

The investigated prototype flow configurations include linear cy-
lindrical Poiseuille and thermal creep flows and TPD effect, as well as 
plane Couette and Fourier flows. The first three problems are very 
common in internal rarefied gas flows, while the other two have been 
chosen, as representative problems in boundary driven flows (Couette) 
and heat transfer configurations (Fourier). These flows have been 
extensively considered in the literature and therefore, here, only the 
governing linearized S kinetic equations, with the associated moments 
and the employed CL boundary conditions are presented, mainly for 
clarity and completeness. In all cases, the solutions depend on αt and αn, 
as well as on the gas rarefaction parameter δ = D/l, where D is a char-
acteristic dimension and l the equivalent mean free path, defined as l =
P/(μυ0) (P is a reference pressure, μ and υ0 are the dynamic viscosity and 
the gas most probable molecular speed respectively at some reference 
temperature) [58]. The gas rarefaction parameter δ ∈ [0,∞) is propor-
tional to the inverse Knudsen number. Formulation and most of the 
results are presented in dimensionless form. 

Starting with the linear fully-developed cylindrical Poiseuille and 
thermal creep flows, following linearization and projection, the gov-
erning equations are [36]: 

cr
∂Φi

∂r
−

cθ

r
∂Φi

∂θ
+ δΦi = δ

[

ui +
2
15

qi
(
c2

r + c2
θ − 1

)
]

+ SΦi (4)  

cr
∂Yi

∂r
−

cθ

r
∂Yi

∂θ
+ δYi = δ

4
15

qi + SYi (5) 

In Eqs. (4) and (5), r ∈ [0,1] is the radial coordinate, cr and cθ are the 
velocity components in the r and θ (vertical to r) directions respectively, 
the subscript i = P,T refers to the Poiseuille and thermal creep flows and 
the source terms are: SΦP = − 1/2, SΦT = − 1/2

(
c2

r + c2
θ − 1

)
, SYP = 0, 

SYT = − 1. The bulk velocity ui(r) and heat flux qi(r) are given as 

ui(r) =
1
π

∫ ∞

− ∞

∫ ∞

− ∞
Φi(r, cr, cθ)exp

(
− c2

r − c2
θ

)
dcrdcθ (6)  

Fig. 5. Couette flow – Uncertainty of dimensionless shear stress u(Π)/Π vs δ for input uncertainty u(αn)/αn = 10%, with an = [0.2, 0.5, 0.9] and at = [0.3, 0.5,
1.5,1.7]. 
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qi(r) =
1
π

∫ ∞

− ∞

∫ ∞

− ∞

[

Φi(r, cr, cθ)
(
c2

r + c2
θ − 1

)
+

3
4
Yi(r, cr, cθ)

]

× exp
(
− c2

r − c2
θ

)
dcrdcθ

(7) 

At r = 1, the CL boundary conditions read as: 

Φi(1, cr < 0, cθ) =
2(1 − αt)

αn
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
παt(2 − αt)

√

∫ ∞

− ∞

∫ ∞

0
Φi(1, ć r > 0, ć θ)ć r

× exp
[

−
ć 2

r + (1 − αn)c2
r

αn
−
[(1 − αt)cθ − ć θ]

2

αt(2 − αt)

]

× I0

(
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − αn

√
crć r

αn

)

dć rdć θ

(8)  

Yi(1, cr < 0, cθ) =
2(1 − αt)

3

αn
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
παt(2 − αt)

√

∫ ∞

− ∞

∫ ∞

0
Yi(1, ć r > 0, ć θ)ć r

× exp
[

−
ć 2

r + (1 − αn)c2
r

αn
−
[(1 − αt)cθ − ć θ]

2

αt(2 − αt)

]

× I0

(
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − αn

√
crć r

αn

)

dć rdć θ

(9) 

At r = 0, the common symmetry boundary condition is imposed. Eqs. 
(4)-(9) are solved and then, the reduced flow rates (or kinetic co-
efficients) GP and GT are computed as 

GP = − 4
∫ 1

0
uP(r)rdr,GT = 4

∫ 1

0
uT(r)rdr (10) 

The corresponding mass flow rates may be readily deduced via a 
well-known methodology [12]. 

In the TPD effect, the net mass flow rate is zero due to a thermal creep 
flow in one direction and a Poiseuille flow in the opposite one. In the 
case of small temperature difference between the capillary ends, the 
exponent γ of the TPD effect may be readily deduced as 

γ =
GT

GP
(11)  

where GP and GTare obtained by solving the Poiseuille and thermal 
creep flows. Depending on the experimental rig and measurement 
methodology, it may be easier to measure the pressure difference in a 
TPD setup (zero net mass flow rate), rather than the mass flow rate in a 
typical thermal creep flow [13]. In order to be consistent with the ter-
minology “flow” used in the Poiseuille, Couette, thermal creep and 

Fourier flows, in the rest of the paper, the TPD effect will be referred as 
the TPD flow and the associated exponent as the TPD exponent. 

In the linear Couette flow, the lower and upper plates are moving in 
the opposite direction with dimensionless velocities 1/2 and − 1/2 
respectively. Following linearization and projection the governing 
equations are [66]: 

cx
∂ΦC

∂x
+ δΦC = δ

[

uC +
2
15

qC

(

c2
x −

1
2

)]

(12)  

cx
∂YC

∂x
+ δYC = δ

4
15

qC (13) 

In Eqs. (12) and (13), x ∈ [ − 1/2,1/2] is the space coordinate, cx is 
the x − component of the molecular velocity (normal to the walls) and 
uC(x), qC(x) are the bulk velocity and heat flux distributions given as 

uC(x) =
1̅
̅̅
π

√

∫ ∞

− ∞
ΦC(x, cx)exp

(
− c2

x
)
dcx (14)  

qC(x) =
1̅
̅̅
π

√

∫ ∞

− ∞

[

ΦC(x, cx)

(

c2
x −

1
2

)

+YC(x, cx)

]

exp
(
− c2

x
)
dcx (15) 

At x = ∓1/2, the CL boundary conditions read as: 

ΦC( ∓ 1/2, cx≷0) = ±
αt

2
+

2(1 − αt)

αn

∫

ć x≶0
|ć x|exp

(

−
ć 2

x + (1 − αn)c2
x

αn

)

× I0

(
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − αn

√
cxć x

αn

)

ΦC( ∓ 1/2, ć x≶0)dć x

(16)  

YC( ∓ 1/2, cx≷0) =
2(1 − αt)

3

αn

∫

ć x≶0
|ć x|exp

(

−
ć 2

x + (1 − αn)c2
x

αn

)

× I0

(
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − αn

√
cxć x

αn

)

YC( ∓ 1/2, ć x≶0)dć x (17) 

The main output quantity is the shear stress given by 

Π = ϖ(x) =
2̅
̅̅
π

√

∫ ∞

− ∞
cxΦC(x, cx)exp

(
− c2

x
)
dcx (18)  

and is independent of x. 
Finally, in the linear plane Fourier flow, the lower and upper plates 

are kept in different dimensionless temperatures 1/2 and − 1/2 
respectively and the governing equations are [67]: 

Fig. 6. Thermal creep flow – Uncertainty of reduced flow rate u(GT)/GT vs δ for input uncertainty u(αt)/αt = 10%, with αt = [0.3, 0.5, 1, 1.5,1.7] and αn = [0.1, 1].  
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cx
∂ΦF

∂x
+ δΦF = δ

[

ρF + τF

(

c2
x −

1
2

)

+
4
15

qF

(

c2
x −

3
2

)]

(19)  

cx
∂YF

∂x
+ δYF = δ

[

τF +
4
15

qFcx

]

(20) 

In Eqs. (19) and (20), x ∈ [ − 1/2,1/2] is the space coordinate, cx is 
the x − component of the molecular velocity and ρF(x), τF(x), qF(x) are 
the perturbed macroscopic velocity, temperature and heat flux distri-
butions written as 

ρF(x) =
1̅
̅̅
π

√

∫ ∞

− ∞
ΦF(x, cx)exp

(
− c2

x
)
dcx (21)  

τF(x) =
1

3
̅̅̅
π

√

∫ ∞

− ∞

[
2ϒF(x, cx)+ΦF(x, cx)

(
2c2

x − 1
)]

exp
(
− c2

x
)
dcx (22)  

Q = qF(x) =
1̅
̅̅
π

√

∫ ∞

− ∞

[

YF(x, cx)+ΦF(x, cx)

(

c2
x −

3
2

)]

cxexp
(
− c2

x

)
dcx

(23) 

The heat flux Q is the main output quantity and is constant across the 
plates. 

At x = ∓1/2, the CL boundary conditions read as: 

ΦF( ∓ 1/2, cx≷0) = ∓
αn

2
(
1 − c2

x
)
+

2
αn

∫

ć x≶0
|ć x|exp

(

−
ć 2

x + (1 − αn)c2
x

αn

)

× I0

(
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − αn

√
cxć x

αn

)

ΦF( ∓ 1/2, ć x≶0)dć x

(24)  

YF( ∓ 1/2, cx≷0) = ∓
αt(2 − αt)

2

+
2(1 − αt)

2

αn

∫

ć x≶0
|ć x|exp

(

−
ć 2

x + (1 − αn)c2
x

αn

)

× I0

(
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − αn

√
cxć x

αn

)

YF( ∓ 1/2, ć x≶0)dć x (25) 

Each problem has been solved for many values of αt and αn in the 
whole range of δ in order to provide an adequate dense database of the 
corresponding main output quantity to be employed in the MC 

Fig. 7. Thermal creep flow – Uncertainty of reduced flow rate u(GT)/GT vs δ for input uncertainty u(αn)/αn = 10%, with αn = [0.2, 0.5,0.9] and αt = [0.3, 0.5,
1.5,1.7]. 
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uncertainty propagation analysis performed in Section 3. The databases 
consist of the flow rates GP and GT for the Poiseuille and thermal creep 
flows respectively, the shear stress Π for the Couette flow and the heat 
flux Q for the Fourier flow and are provided in digital form in the sup-
plementary material. 

3. Uncertainty analysis via the Monte Carlo method 

The objective is to formally analyze the effect of the CL ACs on the 
main output quantities of the considered prototype problems in the 
whole range of gas rarefaction. This may be numerically fulfilled by 
introducing, in each problem, some uncertainties in the ACs, which are 
treated as input quantities and compute the corresponding deduced 
uncertainty of the main output quantity. It is expected the sensitivity of 
the output quantity on the ACs to be stronger, when, for a given input 
uncertainty, the uncertainty of the output quantity is large. 

Among other methods, the stochastic Monte Carlo (MC) method has 
been chosen as the most suitable for the present work, due to its 
versatility to provide probabilistic insights in complex problems such as 
the solution of differential and integrodifferential equations, where 

analytical solutions are not available, without requiring model as-
sumptions [64,68]. The same approach has been applied in [55] to 
investigate the importance of uncertainties of other input data, such as 
pressure, temperature, radius, and Maxwell AC on the flow rates of the 
Poiseuille and thermal creep flows and it also employed in the present 
work. 

A discussion of the implemented uncertainty analysis is provided. 
The ACs αt and αn can be represented as αj = αj ± u

(
αj
)
, with j = [t,n], 

where αj denotes the nominal (or mean) value and u
(
αj
)

is the associated 
uncertainty introduced in the AC αj, The main output quantity in each 
problem can be represented as y = y ± u(y), with y = [GP,GT , γ,Π,Q], 
where y is the mean value and u(y) is the computed output uncertainty. 

A large number of trials Nt is performed in each problem. In each trial 
a value of one input quantity, either αt or αn is sampled, based on a 
specific distribution, from the interval aj ∈ [αj − u

(
αj
)
,αj +u

(
αj
)
] and the 

corresponding value of the output quantity yi, i = 1,2,…,Nt, is obtained 
based on the computational model. When one of the ACs is subject to 
uncertainty, the uncertainty of the second one is assumed to be zero. 
This way the effect of each AC is separately obtained. 

By performing the required number of trials, the mean value of the 

Fig. 8. Thermal creep flow – Uncertainty of reduced flow rate u(GT)/GT vs u(αt)/αt , with αt = [0.3, 1] and αn = [0.1] (up) and u(αn)/αn, with αn = [0.5] and αt = [0.3,
1.7] (down) for δ = [10− 2, 1, 10, 50]. 
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output quantities y is calculated as 

y =
1
Nt

∑Nt

i=1
yi (26)  

while the associated uncertainty u(y) is calculated as 

u(y) = kpσy (27)  

where σy is the standard deviation, given by 

σy =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
Nt − 1

∑Nt

i=1
(yi − y)2

√
√
√
√ (28)  

and kp is the specified coverage factor (kp = 2 and kp = 3 correspond to 
95 % and 99 % coverage intervals respectively). The uncertainties in the 
input and output quantities, provided in the next section, are always 
reported as relative uncertainties on a percentage basis defined as 

u
(
αj
)

αj
× 100% and

u(y)
y

× 100% (29) 

In the present work, Nt = 1000 trials have been conducted and the 
input quantities are sampled from a uniform distribution as αj = αj +

u
(
αj
)(

1 − 2Rf
)
, j = [t,n], where Rf is a random number between 0 and 1. 

The actual distribution of the input quantities is not known, and the 
uniform distribution is the appropriate choice based on the principle of 
maximum entropy, as the least informative distribution. Then, by solv-
ing the governing equations, with the associated boundary conditions 
for each problem under consideration, the corresponding distribution 
function of the main output quantity y = [GP,GT , γ,Π,Q] is obtained. 
Finally, the distribution function of each main output quantity is used to 
calculate the respective uncertainty. It turns out that the distribution 
function of the output quantity y, always maintains a close resemblance 
to a uniform distribution in all cases examined. Therefore, in all cases, 
results are provided only for the output uncertainties and not for the 
output distributions. 

4. Results and discussion 

Results for the Poiseuille, thermal creep, TPD, Couette and Fourier 
flows are presented. In each of the five protype problems considered, the 

Fig. 9. TPD flow – Uncertainty of exponent u(γ)/γ vs δ for input uncertainty u(αt)/αt = 10%, with αt = [0.3,0.5, 1, 1.5,1.7], αn = [0.1, 1] (up) and u(αn)/αn = 10%, 
with αn = [0.2, 0.5,0.9], αt = [0.5, 1.5] (down). 
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uncertainties of the main output quantity, namely, u(y)y =

[
u(GP)

GP
,

u(GT)

GT
,

u(γ)
γ ,

u(Π)

Π
,

u(Q)

Q

]

is provided in terms of the input uncertainties u(αt)
αt 

and u(αn)
αn 

in a 

wide range of the gas rarefaction parameter δ ∈ [0,50] (from the free 
molecular limit to the slip regime). In most cases the input uncertainty of 
the ACs has been set equal to 10 %, while input uncertainties up to 50 % 
have been also examined. Also, in all reported output uncertainties the 
coverage factor is kp = k95 = 2 and corresponds to 95 % coverage in-
terval, which slightly overestimates the uncertainty in the case of a 
uniform distribution. 

In each problem, the effect of the ACs is discussed and the flow 
setups, as well as the gas rarefaction regimes, where the extraction of the 
AC is facilitated or hindered are pointed out. 

4.1. Poiseuille and couette flows 

In the Poiseuille flow, the uncertainty of the reduced flow rate 
u(GP)/GP versus δ is shown in Figs. 1 and 2, with regard to the input 
uncertainties u(αt)/αt and u(αn)/αn respectively. In both cases the input 
uncertainty is set equal to 10 %. In Fig. 1, the nominal values of αt =

[0.3, 0.5, 1, 1.5,1.7] are examined, covering the range of αt ∈ [0, 2], 
while αn = 1 is kept constant. For δ ≤ 3, the output uncertainties are 
larger than the input ones. They are about 15 %, when αt ≤ 1 and they 
further increase when αt > 1 (backscattering). On the contrary, for δ > 3 
they are less than the input ones, but they remain above 5 %, even up to 
δ = 10, particularly when αt < 1. Similar results have been obtained for 
αn < 1. In Fig. 2, the nominal values of αn = [0.2, 0.5, 0.9] are exam-
ined, covering the range of αn ∈ [0,1]. To have a complete view of the 
effect of αn in the whole range of αt , results are provided for αt = [0.3,0.5,
1.5,1.7]. Always, the output uncertainty is very small, clearly verifying 
that the reduced flow rate GP is practically independent of αn. Since in 
the Poiseuille flow, αt is the only AC affecting the flow, in Fig. 3, 
u(GP)/GP versus u(αt)/αt, varying from zero up to 50 %, with αt = [0.3,
1] and αn = 1, is plotted for representative values of δ ∈ [0,50]. It is seen 
that the output uncertainty grows almost linearly with the input one and 
this is valid for any value of αt . 

The presented results justify, to certain extend, the straightforward 
and accurate estimation of the CL tangential momentum AC, even in the 
slip regime, via experimental work in purely pressure driven flows [13, 
49]. 

In the Couette flow, the main output quantity is the dimensionless 

shear stress Π and its computed uncertainty versus δ is shown in Figs. 4 
and 5, with regard to the input uncertainties u(αt)/αt and u(αn)/αn 
respectively. Both input uncertainties are 10%. 

In Fig. 4, u(Π)/Πis plotted for nominal values of αt = [0.3, 0.5, 1,
1.5, 1.7] with αn = 1. For δ < 1, the output uncertainty is much larger 
than the input one, particularly in the free molecular regime, where the 
dependency of the shear stress on αt is even stronger than the corre-
sponding one of GP in the Poiseuille flow. For δ = 1, the output uncer-
tainty is about the same as the input one and then, as δ increases it 
further reduces. Similar results have been obtained for αn < 1. In Fig. 5, 
u(Π)/Π is plotted for nominal values of αn = [0.2, 0.5, 0.9] and various 
values of αt. In all cases, the output uncertainty has a peak close to δ = 1, 
but the major issue is that it always remains less than 1 %. Thus, the 
shear stress in the Couette flow depends only on αt and is practically 
independent of αn. 

Surely, experimental work in plane or cylindrical Couette-type flow 
setups, under high gas rarefaction conditions, is expected to deduce very 
accurate estimates of the tangential momentum AC. Such work has been 
reported mainly for the Maxwell tangential momentum AC [69,70]. 

4.2. Thermal creep and TPD flows 

In the thermal creep flow, the uncertainty of the reduced flow rate 
u(GT)/GT versus δ is shown in Figs. 6 and 7, with regard to the input 
uncertainties u(αt)/αt = 10% and u(αn)/αn = 10% respectively. In 
Fig. 6, the nominal values of the tangential momentum AC are αt = [0.3,
0.5, 1, 1.5,1.7] for representative values of αn = [0.1, 1], while in Fig. 7, 
the nominal values of the normal energy AC are αn = [0.2, 0.5, 0.9] for 
representative values ofαt = [0.3,0.5, 1.5,1.7]. 

In Fig. 6, it is seen that the output uncertainty u(GT)/GT remains 
always smaller than the input one (u(αt)/αt = 10%), except in the case 
of strong back scattering (αt ≥ 1.5), where for small values of δ reaches 
about 25 %. Also, as αt approaches one, either from below or above, as 
well as when αn increases, the effect of αt on the flow rate (i.e. the un-
certainties of GT) decreases (for αt = αn = 1 the uncertainty becomes 
negligible), while in general, for δ ≥ 2 the output uncertainties are 
small. Comparing these results with the corresponding ones in Fig. 1, it 
is evident that GP depends on αt stronger than GT and therefore it easier 
to extract αt based on the Poiseuille rather than on the thermal creep 
flow. 

In Fig. 7, the sensitivity of the thermal creep flow rate on the normal 

Fig. 10. Fourier flow – Uncertainty of dimensionless heat flux u(Q)/Q vs δ for input uncertainty, with u(αt)/αt = 10% and αn = [0.1, 1].  
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energy AC is shown. For all nominal values of αn, the output un-
certainties u(GT)/GT are significantly smaller than the input ones 
u(αn)/αn = 10%. Comparing these results with the corresponding ones 
in Fig. 2, it is stated that GT depends on αn much stronger than GP, but 
still the dependency is not strong enough to permit a straightforward 

extraction of αn, unless the experimental work is performed under high 
rarefied conditions and the experimental uncertainties are reduced 
below the ones presented in Fig. 7 (less than 4 %), which of course is not 
easily achieved. In general, the uncertainties increase with αn but they 
always remain small. Also, when δ = 1 − 2, the sensitivity of GT on αn 
almost diminishes. Comparing the effect of αt and αn on GT , in Figs. 6 
and 7, it may be stated that the former one is more pronounced at δ ≤ 1, 
while their effect remains small at δ ≥ 1. 

In Fig. 8, the output uncertainty versus the input ones, varying from 
zero up to 50 %, is plotted for indicative values of the ACs and repre-
sentative gas rarefaction parameters δ ∈ [0,50]. Similar to the Poiseuille 
flow, the output uncertainty in the thermal creep flow, grows almost 
linearly with the input one and this is true for any value of αt and αn. 
Based on the observed linear behavior, the output uncertainties may also 
be calculated for different values of the input ones. 

In the TPD flow, the output uncertainty u(γ)/γ remains relatively 
small with regard to the input ones, as in the case of the thermal creep 
flow, and therefore, only few indicative results are presented. In Fig. 9, 
u(γ)/γ is plotted versus δ for input uncertainty u(αt)/αt = 10% (top) and 
u(αn)/αn = 10% (bottom). Compared to thermal creep flow (Figs. 7 and 
8), there is a quantitative difference in the tangential momentum AC, 
where, its effect becomes more dominant as αt approaches one (either 
from below or above), with the output uncertainty obtaining values 
around 15 % at αt = 1, when δ ≤ 1. Also, the effect of αt on the exponent 
γ increases with αn and, in general, it remains significant in a wider 
range of δ. This behavior is opposite to the one observed in the thermal 
creep flow. Unfortunately, the behavior of the exponent γ with regard to 
αn is almost quantitatively identical to the one observed in thermal creep 
flow (compare Fig. 9 (bottom) with Fig. 8). Thus, taking into consider-
ation that temperature driven flows should be useful in the estimation of 
the CL normal energy AC, it is deduced that the employment of the TPD, 
instead of the thermal creep flow, is not expected to be particularly 
useful, unless of course the involved experimental uncertainties are 
significantly reduced. 

Overall, it is seen that the employment of the thermal creep or TPD 
flows, does not facilitate the extraction αn, since the dependency of the 
reduced flow rate and exponent respectively on αn is relatively weak, in 
a wide range of gas rarefaction. The whole effort becomes even harder 
when the work is conducted in the late transition and slip regimes, 
where indicatively, the experimental uncertainties must be below 4 % in 
order to obtain estimates of αn with reliability of 10%. 

4.3. Fourier flow 

In the Fourier flow, the main output quantity is the dimensionless 
heat flux Q and its computed uncertainty versus δ is shown in Figs. 10 
and 11, with regard to the input uncertainties u(αt)/αt and u(αn)/αn 
respectively. Both input uncertainties are 10%. In the Fourier flow the 
heat flux is symmetric about αt = 1, independent of the value of αn and 
therefore, the output uncertainties u(Q)/Q are presented only for αt ∈ [0,
1]. 

To demonstrate the effect of αt , in Fig. 10, u(Q)/Q is plotted for 
nominal values of αt = [0.3, 0.5, 1] with αn = [0.1, 1]. The output un-
certainties increase as δ decreases (this is well expected), as well as when 
αt and αn decrease, i.e., as the tangential momentum and normal energy 
accommodations become more specular. In general, the output uncer-
tainty u(Q)/Q is about the same or smaller than the input one u(αt)/αt =

10% and therefore, Poiseuille or Couette flow setups are more suitable 
compared to Fourier flow setups, for the extraction of αt. 

To demonstrate the effect of αn, in Fig. 11, u(Q)/Q is plotted for 
nominal values of αn = [0.2, 0.5, 0.9] with αt = [0.3,0.5, 1]. The output 
uncertainties increase as δ decreases, as well as when αt decreases and 
when αn increases. The output uncertainties u(Q)/Q remain in the same 
range as the ones in αt surpassing in some cases the input one u(αn)/αn =

10%. Comparing with the corresponding results in Figs. 7 and 11, it is 

Fig. 11. Fourier flow – Uncertainty of dimensionless heat flux u(Q)/Q vs δ for 
input uncertainty u(αn)/αn = 10%, with αn = [0.2, 0.5,0.9] and αt = [0.3,
0.5, 1]. 
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evident that the heat flux Q is more sensitive than the flow rate GT to αn. 
Therefore, the Fourier heat transfer setup may be more suitable than the 
thermal creep flow to extract the normal energy AC, particularly in the 
transition and free molecular regimes, provided that the tangential 
momentum AC has been already accordingly fixed via some Poiseuille or 
Couette flow configuration. Furthermore, by varying the input un-
certainties u(αt)/αt and u(αn)/αn from zero up to 50 %, it is verified that 
the output uncertainty, as in the case of the other flow setups increases 
linearly with respect to the input ones (not shown here). The above 
remarks are expected to remain valid also in the case of Fourier flow 
between concentric cylinders. 

4.4. Effect of the CL accommodation coefficients on the dimensional main 
output quantities 

So far, the analysis has been performed in dimensionless form. The 
sensitivity of the main dimensionless output quantity of each problem, 
namely y = [GP,GT, γ,Π,Q], on αt and αn, in the whole range of δ, has 

been examined, by assuming driving forces of infinitesimal small 
magnitude. In order to investigate the effect of small but finite magni-
tude driving forces, as well as of other parameters, such as problem 
geometry and working gas, on the reported results, in this section, the 
sensitivity of the associated main dimensional output quantity of each 
problem on αt and αn, for indicative flow setups, is considered. Also, this 
task facilitates the implementation of the present analysis in future 
experimental work. 

For the Poiseuille, thermal creep and TPD flows, consider the fully- 
developed gas flow through a long capillary of radius R = 0.485mm 
and length L, with L/R = [20,50], connecting two containers (A and B) 
maintained at some pressures Pi and temperatures Ti, with i = A,B. The 
reference pressure and temperature are the ones of container A, while 
the working gases are helium (He) and argon (Ar). 

In the Poiseuille flow, the reference pressure ranges as PA = [0.16 −

800]Pa and the flow is due to the pressure ratios PB/PA = [0, 0.5,0.9]
(TA = TB). The main dimensional output quantity is the mass flow rate, 
given by [12,71] 

Fig. 12. Poiseuille flow – Uncertainty of mass flow rate u(MP)/MP vs δm for input uncertainty u(αt)/αt = 10%, with at = 1 and an = 1.  

Fig. 13. Thermal creep flow – Uncertainty of mass flow rate u(MT)/MT vs δm for input uncertainty u(αn)/αn = 10%, with αn = 0.5 and αt = 0.5.  
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MP =
πR3G*

P
υ0

PB − PA

L
(30)  

where G*
P = 1

δВ − δА

∫ δB
δA

GPdδ, with δA and δB denoting the gas rarefaction 
parameters in containers A and B. In Fig. 12, the uncertainties u(MP)/MP 
versus the average gas rarefaction parameter δm = (δA +δB)/2 is plotted 
for input uncertainties u(αt)/αt = 10%, with αt = 1 and αn = 1 for 
various pressure and length to radius ratios and for He and Ar. In all 
cases, the deduced uncertainties almost coincide to each other and are in 
excellent agreement with the corresponding ones in Fig. 1, clearly 
indicating that the effect of the magnitude for the driving force, the 
capillary geometry and the working gas on the sensitivity of the Pois-
euille flow rate on αt is negligible. 

In the thermal creep flow, the reference temperature is TA = 297.5K 
and the flow is due to the temperature ratios TB/TA = [1.2, 3.8], 
assuming linear temperature variation along the capillary, with PA = PB 
= [0.16 − 800]Pa. The main dimensional output quantity is the mass 
flow rate, given by 

MT = −
πR3

υ0(z)
dP(z)

dz
GP(δ,αt , an)+

πR3

υ0(z)
P(z)
T(z)

dT(z)
dz

GT(δ,αt , an) (31) 

Following a well-known procedure, MT as well as the pressure and 
pressure gradient distributions along the capillary are obtained [65,72, 
73]. In Fig. 13, the uncertainties u(MT)/MT versus the average gas 
rarefaction parameter δm = (δA +δB)/2 is plotted for input uncertainties 
u(αn)/αn = 10%, with αn = [ 0.5] and αt = [0.5] for two temperature and 
length to radius ratios and for He and Ar. Again, the deduced un-
certainties are in excellent agreement and there is very good resem-
blance with the corresponding results in Fig. 7. Thus, the effect of the 
magnitude for the temperature difference, the capillary geometry and 
the working gas on the sensitivity of the thermal creep flow rate on αn is 
negligible. In the TPD flow, the main output quantity is the pressure 
ratio PB/PA and is obtained by Eq. (31), with MT = 0. Similarly, the 
computed uncertainties (not shown here) are very close to the ones re-
ported in Fig. 9. 

In the plane Couette and Fourier flows, the dimensional shear stress 
Π̂ and heat flux Q̂ are directly related with the dimensionless ones, as Π̂ 
= ΠPUw/υ0 and Q̂ = QPυ0ΔT/Tm, where P is some reference pressure, 
Uw is the wall velocity, ΔT = T1 − T2 is the temperature difference be-
tween the temperature of the two plates and Tm is the reference average 
temperature. Thus, it is obvious that the uncertainties of the dimensional 
shear stress and heat flux should always accordingly align with the 
corresponding dimensionless ones in Figs. 4–5 for the Couette flow and 
Figs. 10–11 for the Fourier flow respectively and are independent of the 
distance between the plates and the working gas. They are also inde-
pendent of the ratios Uw/υ0 and T1/T2, provided that they are 
adequately small to permit the implementation of the linear S kinetic 
model. 

Overall, it is stated that the results in Sections 4.1, 4.2 and 4.3 are 
valid in a wide range of operating conditions and geometry character-
istics for any monatomic gas subject to the main assumptions of fully 
developed flow and linear heat transfer. 

5. Concluding remarks 

In the present work the objective is to quantitatively determine the 
effect of the CL ACs on main output quantities of various representative 
type flow and heat transfer configurations, in the whole range of gas 
rarefaction. It is fulfilled by performing a formal and detailed sensitivity 
propagation analysis via the Monte Carlo method. The cylindrical 
Poiseuille, thermal creep and TPD flows, as well as the plane Couette and 
Fourier flows have been examined. In each problem some uncertainty is 
introduced in the tangential momentum (αt) or normal energy (αn) AC 
and the associated uncertainty of the main output quantity is stochas-
tically computed in the whole range of the gas rarefaction parameter δ. 

The flow setups and the rarefaction regimes with the larger output un-
certainties are the most suitable ones for the estimations of the ACs, 
since larger modeling and experimental errors may be acceptable. 

It has been found that the flow rate and the shear stress of the 
Poiseuille and Couette flows respectively are strongly affected by αt. 
More specifically, in moderate and high gas rarefaction the uncertainty 
of the output quantities may be several times higher than the input 
uncertainty of αt. On the contrary, the output quantities are not affected, 
at all, by αn. Either of these flows is very suitable for the accurate esti-
mation of αt , allowing relatively large uncertainties in measurements 
and computations. Furthermore, it has been found that the flow rate and 
the exponent in the thermal creep and TPD (zero net mass flow) flows 
respectively, are affected by both CL coefficients, but in a rather weak 
manner. Considering that αt has been already fixed, here, we are mostly 
interesting on the sensitivity of the output quantities with respect to αn, 
which unfortunately turns out to be very small. Indicatively, for an input 
uncertainty of 10 %, the output uncertainties in either the thermal creep 
or TPD flows, are less than 4 % in the whole range of δ, which clearly 
implies that the estimation of αn within 10 % requires uncertainties 
<4 % in measurements and computations. Finally, in the Fourier flow it 
has been found that the heat flux is affected, in a rather moderate 
manner by both coefficients, particularly for δ ≤ 1, where for example, 
an input uncertainty of 10 % in αn, yields a heat flux with about the same 
uncertainty. Thus, there is a larger upper margin for numerical and 
experimental uncertainties. Comparing the corresponding results be-
tween the thermal creep, TPD and Fourier flows it is deduced that for the 
reliable estimation of the CL normal energy AC, it is more suitable to 
combine the Poiseuille (or Couette) and Fourier configurations, rather 
than, as it is commonly done, the Poiseuille and thermal creep (or TPD) 
ones. 

The present analysis has been performed in dimensionless form, 
assuming infinitesimal small driving forces and therefore, the output 
dimensionless quantities depend only on the ACs and δ. It has been 
shown however, that the presented results remain valid even in the case 
of small but finite pressure and temperature differences and are inde-
pendent of the working gas and geometrical characteristics. Thus, the 
presented behavior of the effect of the CL ACs is general and may be 
applied in the characterization of gas-surface interaction in prototype 
setups, as well as in more realistic and complex configurations in 
microfluidics and vacuum technology. Furthermore, the present sensi-
tivity analysis may be extended in polyatomic gases based on the 
Cercignani-Lampis-Lord kernel [31], as well as in other gas-surface 
scattering kernels with molecular velocity dependent ACs [61,62]. 
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