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ABSTRACT 
An extensive account of the available numerical methodologies for capturing the dynamic 
behaviour and interaction of translating and/or oscillating bubbles is provided. Different 
numerical schemes are classified in three large categories according to the way by which they 
capture deformation of the interface, as: boundary integral methods where only the bubble’s 
interface is discretized, boundary fitted schemes where the flow field surrounding the bubble 
is discretized with the interface being identified as one of the coordinate surfaces, and surface 
tracking schemes where the entire domain both inside and outside the bubble is discretized 
while the shape of the interface is described via a volume-of-fluid, a level-set or a polynomial 
function. The boundary integral method provides a better description of the fine details 
during the last stages of bubble collapse and break-up. The approach via boundary fitted 
coordinates allows for proper description of the vorticity field around a bubble as well as the 
formation of eddies behind a translating bubble, over a wide range of Re. Surface tracking 
techniques can capture severe topological changes in the bubble shape and consequently 
provide a means to capture the post break-up or post coalescence dynamics. The impact of 
recent advances in numerical simulations in the understanding of issues of fundamental 
importance in bubble dynamics, such as monitoring the details of bubble deformation during 
collapse and identifying the factors determining the mechanism that triggers path instabilities 
of rising bubbles, is discussed. Recent developments in the area of direct numerical 
simulations of bubble dynamics are presented. 
 
I. INTRODUCTION 

Ever since Lord Rayleigh [1] first studied the spontaneous generation and collapse of 
bubbles in order to explain the damage of propellers of high-speed boats and submarines, 
research interest in bubble dynamics has grown significantly and presently encompasses a 
wide spectrum of natural and technical applications. Gas-liquid separation in adsorption 
towers, two-phase heat exchange and condensation, mixing in chemical reactors, purification 
of metal alloys by flotation and ship hydrodynamics are just some of the technical fields 
where bubble dynamics play an important role [2]. There is also growing interest in the 
dynamics of bubble growth and dissolution in geophysics, in relation to the processes of heat 
and mass exchange between the oceans and the atmosphere. More recently, there is additional 
impetus in the field of nonlinear bubble dynamics in the context of single bubble sono-
luminescence, which is a phenomenon associated with light emission during collapse of 
either a cavitating or a laser induced bubble [3]. An important side effect of bubble collapse 
is the local temperature rise that stimulates formation of active chemical agents and 
consequently enhances chemical reactivity [4] (sonochemistry). Finally, during the last 
decade there is an emerging biomedical application of bubbles in the form of contrast agents, 
which are essentially micron size bubbles that are encapsulated in a lipid polymer or albumin 
shell. Today, these bubbles are clinically established markers of vascularity and are used for 
quantitative blood flow and volume measurements, especially in ultrasound 
echocardiography [5], due to their large backscatter signal in the ultrasound range 
frequencies. Controlled oscillations and collapse of such bubbles has also recently been used 
for enhanced drug and gene delivery [6].  

It has thus become increasingly important to capture the details of bubble motion and 
deformation whether this refers to the onset of shape oscillations or to bubble break-up, 
collapse and the possible formation of satellite bubbles. Since the early theoretical work by 
Prosperetti [7] on the stability of spherosymmetric bubble oscillations a large amount of 
theoretical studies have been published investigating parametric excitation of shape modes 
and exploring the importance of resonant mode interaction. The review article by Feng & 
Leal [8] gives a detailed account of the important theoretical findings in this line of research, 
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and recently McDougald & Leal [9,10] conducted a numerical study on the nonlinear inviscid 
oscillations of a bubble in order to validate the available theories, using spectral and 
boundary elements.  

Since the study of Blake & Gibson [11] on bubble collapse next to a solid boundary, where 
jet formation during collapse was identified as a primary factor for damage, investigation of 
bubble break-up has been dominated by the boundary element method due to its cost 
efficiency in capturing complicated shape topologies [11,12]. Bubble behaviour in response 
to large amplitude perturbations is also very important in sono-luminescence. In particular, a 
certain degree of sphericity seems to be important for light emission, as it is associated with 
the formation of a converging shock wave during bubble collapse [13]. While inviscid theory 
is enough for describing the dynamics of millimetre sized bubbles, for smaller bubbles with 
equilibrium radius below 100 µm, such as those employed in sonoluminscence and in 
biological applications, thermal and viscous damping are also expected to play a role in the 
dynamics [14]. Consequently, there is increasing interest in incorporating the effect of 
dissipation in the models describing bubble oscillations, primarily viscous dissipation which 
becomes increasingly dominant for micron sized bubbles, and this is reflected in a number of 
recent studies. Boulton-Stone & Blake [15] included viscous effects in their study of gas 
bubbles bursting at a free surface, following an earlier numerical study on drop dynamics by 
Lundgren & Mansour [16]. The idea is the same whether one is working with the boundary 
layer around a drop or a bubble and lies on the fact that, provided there is no massive 
separation taking place at the surface, one can integrate across the boundary layer and obtain 
expressions for the vortical part of the pressure and velocity fields solely based on surface 
properties [7]. More recently, this methodology has been employed in order to capture the 
detailed dynamics and investigate the existence of universalities during the collapsing stage 
of an initially elongated bubble [17,18], with or without internal overpressure.  

When a bubble undergoes translation, as is normally the case in bubbly flows, for 
moderate to large values of Re a region of recirculation is expected to form behind the bubble 
and a uniformly valid integration across the boundary layer can no longer be applied as a 
means to account for viscous effects. This effect, along with the significantly smaller inertia 
that characterizes the gas inside the bubble in comparison with the surrounding liquid, are 
two prominent features of bubbly flows that call for special treatment and indeed they have 
attracted the attention of researchers in the past decades. A thorough review of the literature 
in this area of research has been given by Magnaudet & Eames [19]. A brief account of the 
most important results regarding the different forces exerted upon a translating bubble, in 
relation to the numerical methodology that was used, is provided in the following. Following 
an earlier theoretical study by Moore [20] that provided the drag coefficient of a moving 
bubble considering the effect of the thin boundary layer and the wake region behind the 
bubble, Miksis et al. [21] used the boundary integral method in order to calculate the steady 
shape acquired by a rising bubble. In an effort to account for viscous dissipation in the 
separated region behind the bubble Ryskin & Leal [22,23] developed a boundary fitted finite 
difference method for the solution of steady axisymmetric flow past a deforming bubble. In 
this fashion they were able to capture similar ellipsoidal and spherical-cap bubble shapes as 
in [21], but also the structure of separated flow behind a rising bubble. A time dependent 
boundary fitted numerical scheme, based on the finite volume methodology, was developed 
by Takagi et al. [24] and was applied to the case of axisymmetric flow past a rising bubble in 
order to verify previously obtained empirical relations for the drag coefficient covering the 
entire range of Re. A similar methodology was developed by Magnaudet et al [25] for 
calculating the drag, added mass and lift force on bubbles in steady axisymmetric [25] and 
three dimensional flows [26]. The latter studies aim at validating and extending available 
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theoretical and/or empirical correlations for the different forces affecting bubble motion. 
Such correlations find extensive use in simulations of bubbly flows. 

This type of research activity is also greatly motivated by the fundamental problem of path 
instabilities that are often observed in bubbles rising in various kinds of liquids, when the 
relevant Re exceeds certain threshold values. A central issue in this problem is the role of the 
wake in the mechanism that triggers the instability, especially since shape oscillations have 
been experimentally observed as a concomitant phenomenon in occasions where bubbles 
exhibit a zigzag motion [27] with a frequency that determines the frequency of vortex 
shedding. Nevertheless, this only happens beyond a critical bubble radius, RCr=4mm, below 
which vortex shedding takes place at a frequency that is independent from that of shape 
oscillations. In a similar experimental study Wu & Gharib [28] found that spherical bubbles 
become unstable and give rise to a zigzagging path whereas when ellipsoidal bubbles become 
unstable they exhibit a helical trajectory. The basic question underlying the above 
experimental and theoretical/numerical studies is whether it is the unsteadiness of the wake 
that triggers the unsteadiness of the bubble’s path, as was originally suggested by Saffman 
[29], or whether it is the unsteadiness of the bubble’s shape that determines the behaviour of 
the wake. A related problem is that of chaotic bubble motion, also known as the ‘dancing 
bubble problem’, that arises when the sound amplitude exceeds a certain threshold [30]. 
Utilizing an old idea by Saffman [31] for self propulsion, Benjamin and Ellis [32] obtained a 
formula for the drift velocity of an oscillating bubble as a consequence of second order 
interaction between two neighboring shape modes, in the context of inviscid theory. Clearly 
then, bubble drift involves different types of dynamic interaction phenomena, the proper 
simulation of which has motivated development of quite sophisticated theoretical and 
numerical techniques in the recent years.  

Bubble behaviour in bubbly flows but also single bubble motion involves, especially at 
large Re or large acoustic disturbances, a wealth of dynamic phenomena some of which entail 
severe topological changes such as break-up and formation of satellite bubbles or 
coalescence. Boundary integral techniques or boundary fitted finite difference, finite volume 
and finite element methods can only capture bubble dynamics, with varying degrees of 
accuracy, until slightly before a severe topological change takes place. To proceed beyond 
that point an ad hoc assumption of some sort has to be introduced in the model. As an 
alternative approach that allows for a smooth transition between different flow topologies 
different interface tracking methods have been developed, i.e. front-tracking [33], volume of 
fluid [34] and level set [35] methods, where the entire domain is discretized including the 
interior of the bubble, and the material properties are advected with the velocity of the 
interface. Material properties are taken to be constant over each phase while they are assumed 
to vary across interfacial boundaries via an indicator function that can be as smooth as 
desired. The location of the interface is monitored by following marker points (front-tracking 
methods), a volume of fluid function (volume of fluid methods) or a level set function for 
level set methods. Provided the two phases remain incompressible such methods can give a 
fairly accurate description of interesting dynamic phenomena such as formation of satellite 
bubbles or coalescence [36]. This is a rapidly expanding field of research that is expected to 
evolve into an alternative to experimental observations, especially when control of key 
physical parameters is difficult to maintain in the laboratory environment, and provide 
reliable numerical experiments of bubbly flows.  

In the next section the equations governing the dynamic behaviour of a bubble in a viscous 
fluid are outlined and the basic mathematical and numerical principles behind boundary 
integral, boundary fitted and interface tracking methods are presented. Then, an up to date 
account of the major results obtained via each of the above methodologies is given, in the 
context of important physical questions that have attracted the attention of researchers in the 
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field of bubble dynamics. Finally the current state of the art is reviewed and the advantages 
and drawbacks of the different methods are discussed, conclusions are drawn and directions 
for future research are proposed.  
 

 
Figure 1: Schematic diagram of a translating bubble that may also subject to acoustic 

disturbances  
 
II. STATEMENT OF THE GENERAL PROBLEM 

The general problem that is of interest here is that of a deforming bubble that may 
accelerate at the same time owing to some external forcing, e.g. due to gravity or sudden 
exposure to a shear flow in the far field, or simply perform shape and volume oscillations in 
response to an acoustic pressure disturbance, Fig. 1. The gas inside the bubble may be 
considered to be compressible in which case the ideal gas law is a valid assumption for the 
description of pressure variations inside the bubble 

( ) ( ) ( ) ( )B B B BP t 0 S t 0 P t S tκ κ= = =  (1) 
for a bubble performing adiabatic oscillations; κ denotes the polytropic constant, which is 
normally set to 1.4 for an ideal gas, and SB the bubble volume. Other types of relations for the 
pressure vs. volume dependence inside the bubble have been used, however we adopt the 
adiabatic law for simplicity. The important assumption here is that due to the small gas 
density pressure is assumed to be uniform inside the bubble, while the shear force exerted on 
the interface with the surrounding medium vanishes due to the negligible viscosity of the gas. 
Initially, the bubble is resting at its equilibrium spherical position with equilibrium radius R0, 
and the surrounding medium is quiescent with far field pressure PSt. Thus, at static 
equilibrium pressure drop on the bubble’s interface is balanced by surface tension, 

( ) ( )B St
0

2P t 0 P
R

σ
= − + ρ ⋅ =g x ,  (2) 

with x  denoting the position vector of a fluid particle, ρ liquid density and σ the interfacial 
tension; in the following bold faced symbols will denote vectorial quantities. We consider 
disturbances due to interaction, with an external pressure wave, an external shear or 
elongational flow, or simply as a result of gravitational forces as is the case with rising 
bubbles. The case of an initially elongated bubble is also considered, in the context of 
LASER induced bubbles, by applying a volume preserving initial perturbation of the form, 

( )m
0 nr f (t 0 , r, , ) R Y ,+= = θ φ = + ε θ φ   (3) 

on the bubble’s interface, where f signifies the instantaneous shape of the interface as a 
function of the spherical coordinates (r,θ,φ), and ( )m

nY ,θ φ  the spherical harmonics. When 
acoustic disturbances are considered the wave-length of the pressure wave is taken to be 
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much larger than the bubble radius so that we can neglect spatial characteristics of the wave 
as well as liquid compressibility and consider a disturbance of the form 

( ) ( )St f St A fP P 1 sin t P P sin t∞ = + ε ω = + ω⎡ ⎤⎣ ⎦ ; (4) 
ε and ωf stand for the amplitude and frequency of the disturbance. The bubble’s center of 
mass is allowed to accelerate with an unknown acceleration �W  while at the same time its 
interface is deforming. By superposing the opposite acceleration to the equations of motion 
the bubble is reduced to rest, as far as its translational motion is concerned, and a fictitious 
field force −ρ �W  is added to the Navier-Stokes equations that govern the motion of the 
surrounding fluid. Thus the equations of motion for an incompressible, isothermal fluid that 
surrounds the bubble read:  
continuity: 0V∇ ⋅ =  (5) 

momentum: ( ) P 1
t ρ ρ

�V V V g W τ∂ ∇
+ ⋅ ∇ = − + − + ∇ ⋅

∂
 (6) 

far field condition: → ∞ → −x V W  (7) 

kinematic condition at the interface in Lagrangian form: S
S

D
Dt

=
x

V  (8) 

dynamic condition: ( ) ( )S B S: P P 2 H ,σ σx x n I τ n n n n= − − − + ⋅ = = −∇ ⋅   (9) 
where n  denotes the outwards pointing unit normal vector with respect to the fluid 
surrounding the bubble, ρ, µ, the density and viscosity of the fluid, s , H,∇  the surface 
gradient and mean curvature on the bubble’s interface, respectively, and 

ji

j i

VV
, ,

x x
⎛ ⎞∂∂

= µ +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
I τ  the unit and deviatoric stress tensor, respectively. Finally, the 

instantaneous velocity, W , of the center of mass of the bubble is obtained by the force 
balance, 

( ) ( )B B B B
A

0 S S P dA= ρ − ρ + − + ⋅ −∫∫� wg W I τ n . (10) 

If a solid boundary is present, or when the bubble interacts with an external shear flow the no 
slip boundary condition and the appropriate far field condition [26] are used, with the 
understanding that for a steady flow 0=�W ;  

0,=V  for a solid surface and ( ) ZW y= + αV e  for an external shear flow (11) 
Since the density of the bubble is negligible in comparison with that of the surrounding fluid 
the first two terms in Eq. (10) are normally dropped. If a characteristic velocity U is chosen 
then, along with equilibrium bubble radius R0 that is used as a characteristic length, time, 
space, velocity and pressure are rendered dimensionless and the following dimensionless 
parameters that determine the bubble motion, arise:  

2
0 0 0 0 St f 0

D2 2

UR U R gR R P R
Re , We , Bo , Sh , P , ,

U U U U
ρ ρ α ω

= = = = = ε ω =
µ σ ρ

 (12) 

The first four parameters are identified as the Reynolds, Weber, Bond and Shear numbers 
whereas the last three define the dimensionless pressure datum the amplitude and the 
frequency necessary for the description of an acoustic disturbance; Ze  is the axis that is 
aligned with gravity. Each one of the four dimensionless numbers represents the relative 
importance of the different forces that affect the dynamic behaviour of the bubble. Depending 
on the specific problem under investigation U is determined via the inertia, surface tension, 
gravitational, shear or acoustic forces and this eliminates one of the above parameters riving 
rise to the appropriate system description. In the problems of interest to bubble dynamics 
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viscous forces are normally small and consequently 1/Re is a small quantity that is either 
dropped, if the potential flow assumption is employed, or remains in the problem as a 
parameter that is often amenable to simplifying asymptotic analysis. When bubble-bubble, 
bubble- interface or bubble –rigid boundary interactions are studied an additional parameter 
arises, namely the ratio γ=h/R0 between the initial distance and the bubble’s equilibrium 
radius. 
 
III. DESCRIPTION OF THE MAJOR NUMERICAL METHODOLOGIES 
Based on the above description the numerical problem consists of calculating the velocity and 
pressure fields in the surrounding medium along with the shape of the interface and the 
bubble velocity as a function of time and space. It is a complicated dynamic problem that 
warrants special attention. An outline of the available numerical methodologies is provided in 
the following. 
 
III.1 Boundary Integral Method 
When the flow around the bubble is characterized by large Re and, in case of rectilinear 
motion of the center of mass of the bubble, the wake effects are not very important, the 
assumption of irrotationality in the surrounding liquid holds and the velocity field is 
essentially described by the Laplacian [37]:  

2, 0Φ ΦV = ∇ ∇ = .  (13) 
Then, the pressure variation in the liquid is given by the dynamic version of Bernoulli’s law, 

( )
2 2

2

Z D

D 1 1P Bo P 1 sin t
Dt 2 n s 2

⎡ ⎤Φ ∂Φ ∂Φ⎛ ⎞ ⎛ ⎞− + + + ⋅ + ⋅ = + ε ω +⎡ ⎤⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎣ ⎦∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
�e x W x W   (14) 

in dimensionless form; n and s denote coordinates that vary along the bubble’s surface and 
normal to it, respectively, for an axisymmetric bubble. When the problem of a rising bubble 
is studied, Z Zg , W= − =g e W e , and in the above equation the gravitational and acceleration 

terms assume the form ( )Bo W z+ � . In the same context, the velocity potential in the far field 
becomes, 

WzΦ = −  (15) 
whereas at the bubble’s interface the kinematic condition for a free surface is applied:  

S
S

D
Dt

Φ
x

V= = ∇  (16) 

The Lagrangian representation is adopted here so that interfacial shapes that are not single-
valued in the Eulerian frame can also be captured,  
D
Dt t

V∂
= + ⋅ ∇

∂
. (17) 

The problem description is completed with the imposition of the adiabatic law, Eq. (1), inside 
the bubble, the normal force balance at the interface, 

B S

1 1P P 2H
We We

n− = − = ∇ ⋅ , (18) 

where –2H is the mean curvature of the bubble’s surface, and the force balance determining 
the rectilinear motion of the bubble, i.e. Eq. (10).  

The latter balance is only used when weak viscous effects are included in the model 
describing a bubble rising in a quiescent fluid in which case the evolution of its rectilinear 
velocity W  can be obtained as part of the numerical solution. To this end the pressure and 
velocity fields are decomposed as suggested in [38] in a rotational and an irrotational part 

, P p= + = + ΠV u U  (19) 
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where lower case symbols denote irrotational quantities. It can be seen that the rotational 
velocity field can be described via a vector potential which, due to axisymmetry, is of the 
form,  

( )× , A r, φθU A A e= ∇ =   (20) 
with φe  denoting the azimuthal unit vector. Now the tangential condition on the bubble’s 
interface can also be imposed, 

† 0t V V n⋅ ∇ + ∇ ⋅ =⎡ ⎤⎣ ⎦ . (21) 

where t
G

 signifies the unit vector tangential to the interface. Combining the requirement for 
zero shear on the interface with that for continuity the appropriate scales for the tangential 
and normal components of U  can be obtained, 2

t nn , U , U , A , ~ ,δ δ δ δ Π δ∼ ∼ ∼ ∼  
where δ is the size of the boundary layer. Substituting in the momentum equation an estimate 
for δ~Re-1/2 is provided and subsequent integration across the boundary layer eliminates 
unwanted normal derivatives [15,16,17]. Substituting the weak viscous correction in the 
normal force balance we get a revised form of Eq. (14) for the evolution of the velocity 
potential in terms of quantities evaluated on the interface:  

( ) ( )22
n n B

d 1 1 2u +u U +P -P -2H- Bo+W z+ + -
dt 2 2 Re
Φ

Π� W n u n∞= ⋅ ∇ ⋅  (22) 

There is still one remaining quantity to be evaluated, namely the rising velocity of the 
bubble, which arises as an additional unknown in a dynamic calculation. This can be done in 
a consistent manner by satisfying an integral form of Eq. (22) that corresponds to the axial 
component, i.e. the one in the direction of gravity, of the force balance on the bubble: 

( ) ( ) ( )2
n n Z

0

d 1 2- u -u U + Bo+W z- + ds
dt 2 Re

π Φ
Π� n u n e n⎡ ⎤⋅ ∇ ⋅ ⋅⎢ ⎥⎣ ⎦

∫   (23) 

The final step of this formulation is related to the evaluation of the normal derivative of the 
potential on the bubble’s surface based on the potential itself on the bubble as well as on the 
rest of the boundaries. This is done by substituting for the Laplacian an integral equation that 
relates the potential to its normal derivative, through Green’s theorem. To this end, we apply 
Green’s third identity on the axially symmetric Green’s function of the Laplacian and the 
quantity WzΨ = Φ + , where the term Wz arises in the context of a translating bubble.  

( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 / 22 2 2

0

1 1 / 22 2 2

0

Gˆ ˆ ˆˆ ˆ ˆr, , t r, , t r, , t r, , r, r sin r r d
n

ˆˆG r, , r, r sin r r d ,
n

ξ ξ

ξ ξ

∂⎡ ⎤Ψ θ + Ψ θ − Ψ θ θ θ θ + θ ξ =⎣ ⎦ ∂
∂Ψ

θ θ θ + θ ξ
∂

∫

∫
;  (24) 

where, ( )z r, r cosθ = θ  is the appropriate form of the axial coordinate when the center of 
mass of the bubble is used as the origin. When the bubble interacts with a free surface or with 
another bubble another two integrals arise in eq. (24) involving the potential and the flux on 
the interacting surface. Application of the appropriate dynamic and kinematic conditions at 
the additional interface completes the formulation [11, 41]. The specific form of the integral 
on the left hand side of Eq. (24) is used in order to regularize the strong singularity in the 
normal derivative of the Green’s function [39]. The great advantage of the above formulation 
lies in the fact that only the interface needs to be discretized rather than the entire space, 
while the far field boundary condition is inherently satisfied as a result of the form of the 
singular kernels that are used. Consequently when axisymmetry is assumed only the 
generating curve of the bubble’s surface has to be discretized and the whole problem is 
treated as a PDE with Φ, Α, r and θ as functions of time and of the location of the specific 
particles that are followed in the Lagrangian reference frame.  
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Typically, the description of the unknown functions is provided in terms of a sum of basis 
functions in the finite element fashion, hence this approach is also known as the boundary 
element method [40]. B-cubic splines are often employed as basis functions owing to their 
favorable accuracy and smoothness characteristics, continuity up to the second derivative, 
that guarantee accurate description of complicated topologies [9,10,41,42]. The method can 
be extended to three dimensional flow arrangements as long as large Reynolds numbers are 
involved. When 0=W  and capillary forces are used for the velocity scale, U=(σ/ρ/R0)1/2, the 
case of free bubble oscillations is examined, whereas when acoustic forces are used for the 
velocity scale, U=ωfR0, the case of a cavitating bubble is examined. Finally, when a non-
vanishing acceleration �W  is assumed and gravity is used for rendering velocity 
dimensionless, U=(gR0)1/2, the problem of a rising bubble is addressed [21]. Some important 
findings regarding these problems, obtained via the boundary integral methodology, will be 
presented in the next section. 
 
III.2 Boundary Fitted Coordinate Systems 

This approach is adopted when the Reynolds number describing the flow around the 
bubble is moderate, in which case the full Navier-Stokes equations have to be employed in 
order to capture the characteristics of the motion. This is especially true in the case of rising 
bubbles where the structure of the wake is of interest and the effect it has on the drag and lift 
coefficients and on the destabilizing mechanism that leads to deviations from the rectilinear 
path has been the subject of a large number of research efforts in the past two decades. The 
basic idea lies in the fact that, given the shape of the boundary, mapping functions can be 
obtained, r(ξ,η) & z(ξ,η) where r,z,φ, denote the coordinates of the cylindrical coordinate 
system with z the direction of the axis of symmetry, such that the transformed coordinates 
(ξ,η)∈[(0,1),(0,1)] and r, z satisfy the covariant Laplace equations 

2 2

2 2

z 1 z zf 0, h ,
f ξ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ρ ∂
+ = = +⎜ ⎟ ⎜ ⎟∂ξ ∂ξ ∂η ∂η ∂ξ ∂ξ⎝ ⎠ ⎝ ⎠

 (25) 

2 2

2 2

1 zf 0, h
f η

⎛ ⎞ ⎛ ⎞∂ ∂ρ ∂ ∂ρ ∂ ρ ∂
+ = = +⎜ ⎟ ⎜ ⎟∂ξ ∂ξ ∂η ∂η ∂η ∂η⎝ ⎠ ⎝ ⎠

. (26) 

In the above, f(ξ,η) is the so called distortion function that represents the ratio between the 
metrics along the two transformed coordinates, f(ξ,η)=hη/hξ. It is well known that solutions of 
the Laplacian constitute orthogonal transformations. Consequently, given the boundary shape 
and provided the mapping functions for z and r satisfy appropriate boundary conditions, the 
boundary surface becomes a coordinate surface in the transformed domain. Thus, the entire 
domain is described via the transformed coordinates that are orthogonal by construction, with 
f controlling the density of the coordinate lines [22]. If the shape of the boundary is simple, as 
is the case with a spherical bubble, known expressions from conformal mapping can be used 
as in [25], where ξ=Φ, η=Ψ, with Φ and Ψ denoting the potential and stream function, 
respectively. Subsequently, the equations of motion and continuity [25] or the equations 
describing variations of vorticity and stream function [22] are expressed in the transformed 
coordinates. The formulation in terms of the primitive variables is given herein, following 
[25, 43], in compact conservative form for continuity and momentum, 

( ) ( ) ( )j ki
j j i i i

j k ii j i

h1V 0, H , H
h ≠

∂∂
∇ ⋅ = = ∇ = +

∂ξ ∂ξ
∑ ∑   (27) 

j ii
j i j ij i j i ji j j j jj

j j ji i

V 1 1 P 1 1V V H V V H V V
t Re h Re Re

∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ ∇ ⋅ − τ = − − − τ + − τ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ξ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ . (28) 
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Next, the equations are discretized in the spatial dimensions in various ways, e.g. the finite 
difference [22,23] and the finite volume [25] approaches have been extensively used in the 
past with success, along with the appropriate time integration scheme. Besides the standard 
far field and symmetry conditions employed for axisymmetric flows, special care is needed 
for the outflow conditions in regions where the flow leaves the computational domain. To 
this end a set of parabolic approximations is imposed on the flow field right at the boundary 
where it leaves the domain (n, s signify the normal and tangential directions with respect to 
the boundary) [25],   

2 2 2
N t

2

V V P0, 0, 0.
n n n s

∂ ∂ ∂
= = =

∂ ∂ ∂ ∂
  (29) 

Due to difficulties encountered in the existence and uniqueness of the mapping generation 
schemes [44] a quasi-conformal mapping technique was introduced by Duraiswami & 
Prosperetti [45] for the appropriate generation of orthogonal meshes in single or even 
multiply connected domains, that utilizes the boundary integral method for the solution of the 
Laplacian and adds flexibility in the imposition of the boundary conditions. This approach 
has been independently proposed by Kang & Leal [46] and has been widely adopted ever 
since [47] for flows around curved free surfaces. Nevertheless, when highly curved surfaces 
are involved there is still some discrepancy in the numerical results regarding the formation 
of standing eddies behind a translating bubble with an intensely oblate axisymmetric shape 
[47,48], which attests to the difficulty in capturing the behaviour of the wake for such flows 
and to their possible susceptibility to three dimensional disturbances [47].  

In the finite element literature regarding flows with a free surface both algebraic and 
Elliptic mesh generation schemes have been employed. The former approach typically 
amounts to transforming the coordinate system in such a way that the boundary surfaces 
become coordinate lines, e.g. in the case of an oscillating bubble a transformation of he form 
η=r/f(θ,t), with η∈(1,∞) and r=f(θ,t) the location of the interface, would be such an algebraic 
transformation; r, θ denote the appropriate spherical coordinates for axisymmetric domains. 
The transformed flow domain is discretized by elements that are bordered by fixed spines and 
by a set of curves that move proportionally to the free surface along the spines. In 
axisymmetric domains the spines are normally lines of constant θ [49,50]. Despite the fact 
that algebraic schemes give rise to non-orthogonal meshes, they tend to be computationally 
efficient. But, they require a significant amount of user interaction to define workable 
meshes. Moreover, this type of mesh generation may lead to excessive distortion and, 
sometimes, even crossing of the coordinate surfaces. Similar issues arise when conformal 
mapping is used in order to produce orthogonal meshes out of highly distorted interfaces. 

The basic principles for optimal mesh generation were laid out by Salzman & Brackbill 
[51]. It evolves around three important criteria, namely orthogonality, smoothness and 
density of coordinate lines in regions where large variations occur. Algebraic meshing can 
accommodate the third criterion only. Elliptic mesh generation, via solution of a partial 
differential equation for each computational coordinate, has been exploited extensively in 
order to satisfy orthogonality. In the finite element literature, a significant amount of research 
has gone into accommodating a combination of the above criteria. In particular, 
Christodoulou & Scriven (1992) [52] introduced the generalized Cauchy-Riemann 
conditions, 

x y y xS , S ,ξ = η ξ = −η  (30) 
in association with the orthogonality functional, 

2 2

O x y y x
D

1 1I S S dxdy
S S

⎡ ⎤⎛ ⎞ ⎛ ⎞
= ξ − η + ξ + η⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
∫∫  (31) 
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for two dimensional problems; x, y, signify Cartesian coordinates. The Euler-Lagrange 
equations corresponding to this functional are, 

( )
2 2

2 2

x y1S 0, 0, S
S x y

ξ ξ

η η

ξ η
+⎛ ⎞∇ ⋅ ∇ = ∇ ⋅ ∇ = =⎜ ⎟ +⎝ ⎠

. (32) 

On the basis of this orthogonality functional the above investigators proposed the following 
mapping equations, 

( ) ( )
2 2

2 21
2 2

x +y
+ + ln x +y f 0, J x y -x y ,

x +y J
ξ ξ

ξ ξ ξ η η ξ

η η

ε
ε ξ ξ

ξ

⎡ ⎤ ∂ ⎡ ⎤∇ ⋅ ∇ = =⎢ ⎥ ⎣ ⎦∂⎢ ⎥⎣ ⎦
 (33a) 

( ) ( )
2 2

2 22
2 2

x +y
+ + ln x +y g 0

x +y J
η η

η η

ξ ξ

ε
ε η η

η

⎡ ⎤ ∂ ⎡ ⎤∇ ⋅ ∇ =⎢ ⎥ ⎣ ⎦∂⎢ ⎥⎣ ⎦
, (33b) 

where ε weighs the smoothness functional measure 
( ) ( )2 2

S
D

I + dxdyξ η⎡ ⎤= ∇ ∇⎣ ⎦∫∫  (34) 

relative to the orthogonality functional measure IO, and ε1, ε2 control the concentration of the 
mesh in the ξ and η direction, respectively. The first two terms in (33a) and (33b) are the 
result of minimizing the functional IO+εIS and the third term is added in order to control the 
spacing of the mesh. In the ensuing years variations of the above approach have been 
presented, for two dimensional and axisymmetric geometries, based on the idea that the role 
of the two coordinate lines is different. The coordinate lines parallel to the surface (ξ curves) 
should follow or even concentrate close to the interface, while the coordinate lines normal to 
the interface (η curves) are simply required to intersect smoothly and orthogonally with ξ 
curves [53,54]. Most notably, ε2 was set to zero for the η lines and their concentration was 
basically controlled by the imposed boundary conditions. Whenever required parameters ε, ε1 
and ε2 are chosen so that ellipticity of the equations is retained. This quasi-elliptic approach 
has not found extensive use in the field of bubble dynamics but it has some very promising 
features. 

 
III.3 Surface Tracking Methods 
With the term surface tracking methods we refer to a class of numerical schemes dedicated to 
the simulation of two-phase flows where severe topological changes may occur. In this 
methodology a Eulerian grid is employed for the discretization of the entire domain, which in 
our case consists of the gas and the liquid phase. In most schemes available in the literature 
both phases are taken to be incompressible. There have been surface tracking schemes in the 
literature that deal with different equations of state for different fluids, and consequently can 
handle compressibility [55], but standard practice is to assume incompressibility throughout 
the computational domain. As a first step in this approach surface tension forces are 
incorporated in the Navier-Stokes equations in the form of a volume force [56], ( )-2H I,σ ∇  
where (-2H) is the mean curvature and I the Heaviside function that equals unity in one of the 
two phases and vanishes in the other one. The numerical feature that characterizes different 
surface tracking methods is the fashion by which the instantaneous location of the interface is 
calculated. Depending on the method,  

• An indicator function is introduced that is a field function, ( )I I= x , when the front 
tracking (FT) approach is employed [33], it is constant within each fluid and has a finite 
transition zone up to grid points nearest to the interface. It is utilized in calculating the 
material properties, 
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( ) ( ) ( ) ( ) ( ) ( )0 b 0 0 b 0I , I ,ρ = ρ + ρ − ρ µ = µ + µ − µx x x x   (35) 
and it is evaluated, once the interface location is known, via solution of the Laplacian. 
Essentially it is calculated through a distribution function ( )SD −x x  that determines what 
fraction of an interface property should go to each grid point. This requires a separate 
moving grid for tracking the position of the interface marker points via their velocity, i

Su  

( )
i

i i iS
S S S j

j

d
, D

dt
= = −∑

x
u u x x u  (36) 

which in its turn is evaluated by averaging the velocities of the stationary grid points in the 
vicinity of the interface point. To account for depletion or accumulation of particles in 
certain areas of the domain computational elements are removed or added accordingly. For 
calculating properties of the interface, such as the curvature, polynomial approximations 
are used, once particle connectivity is established by averaging the vector product of the 
various tangent vectors of neighboring interface grid points.  

• Once the mesh is defined each grid cell is associated with a volume of fluid (VOF) 
function [34] that acquires the following values, 

( )
1 if there is liquid at point (x,y)

f x, y, t 0 if there is gas at point (x,y)
between 0 and 1 at the interface

⎧
⎪≡ ⎨
⎪
⎩

. (37) 

Since the type of fluid does not change along path-lines the function f is passively 
advected with the flow which, in conjunction with continuity, gives the conservation law 
for f  

( ) ( )uf uff 0
t x y

∂ ∂∂
+ + =

∂ ∂ ∂
 (38) 

in a two-dimensional flow domain. Based on the above equation, if one uses a 
conservative finite difference scheme, volume is conserved. The manner in which Eq. (38) 
is solved numerically is a central issue in VOF schemes. Firstly, the interface has to be 
reconstructed for given values of f. To this end, a linear approximation to the interfacial 
shape is produced in multifluid cells, i.e., each cell for which ( )0 f , t 1< <x , and the 
normal vector is obtained. Subsequently, the dependent variables in the flow domain are 
advected by either a fractional step or a second order unsplit advection algorithm [56] and 
the density and dynamic viscosity are reconstructed by volume weighting, 

( ) ( ) ( ) ( )o b o bf 1 f , t , f 1 f , t ,ρ = ρ + − ρ µ = µ + − µ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦x x x x   (39) 

• A smooth function, ( ), tφ x , called the level set function is introduced in the level set (LS) 

method [57]. Liquid regions are those in which ( ), t 0φ >x  while the opposite is true for 
gas regions. The free surface is implicitly represented by the set of points in which 

( ), t 0.φ =x  The level set function is maintained as the signed distance to the free surface; 

( )x, t dφ = −
G  in the gas and ( ), t dφ =x  in the liquid, where d=d(t) is the shortest distance 

from the point xG  to the free surface at time t [57]. One of the advantages of the LS method 
is the relatively simple calculation of the curvature of the interface based on the above 

representation, -2H =φ
φ

n∇
= ∇ ⋅ ∇ ⋅

∇
. For incompressible fluids the level set function 

obeys the conservation law,  
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( ) ( )u u
0

t x y
∂ φ ∂ φ∂φ

+ + =
∂ ∂ ∂

.  (40) 

After the advection process is completed the material properties are obtained by 
monitoring the level set function. The interface is modeled as having a small but finite 
thickness for increased smoothness of the results, as was also the case with the FT method. 
Finally the velocity and pressure fields are obtained via a projection method by 
appropriate splitting of the Navier-Stokes equations. A typical drawback of the LS method 
is the loss of mass owing to the nature of the level set function  

In order to circumvent problems associated with loss of mass in the LS method, and avoid 
difficulties encountered in calculating the geometrical characteristics of the interface when 
the FT and VOF approaches are adopted, hybrid methods have been introduced. One such 
method is the combined level set and volume of fluid method (CLSVOF) that has been 
developed [35] for 3D and axisymmetric computations of two-phase flows with quite 
impressive results [36].  
 
IV. PRESENTATION OF RESULTS FROM NUMERICAL SIMULATIONS 
The rapid improvement of computing power that has taken place during the past decades has 
stimulated a large number of numerical investigations in the field of bubble dynamics. New 
methods have emerged while older methods have seen significant improvement. 
Consequently, there has been such an enormous amount of research that has accumulated 
only in the past few years that makes the task of selecting and presenting the most important 
results seem almost insurmountable. Nevertheless, an effort will be made to compile the 
findings of a number of important investigations in the light of some central issues in the 
field. Such central issues that, in the author’s mind, either received satisfying answers via a 
numerical approach in the past few years or deserve special attention in the future, based on 
the current state of the art, are: (a) capturing the fine details of bubble instabilities until the 
last stages of break-up and collapse, (b) identifying the exact role of shape oscillations and 
the structure of the wake behind a translating bubble in triggering path instabilities and (c) 
conducting realistic numerical experiments of bubbles that undergo shape oscillations along 
with a rectilinear motion. These topics are carefully selected because, besides their 
fundamental importance, they best illustrate the capabilities of the three dominant numerical 
methods in the field of bubble dynamics.  
 
IV.1 Bubble oscillations, shape instabilities and break-up 

One of the first issues that were addressed numerically in the field of bubble dynamics was 
the mechanism of bubble collapse near solid or free boundaries and the assessment of their 
destructive power in the context of cavitation damage. It was the pioneering work of Blake & 
Gibson [11] and Blake et al. [58], using the boundary integral method, that first identified the 
effect of jet formation in bubble break-up next to a free boundary or a rigid wall. In the 
former case an accelerating liquid jet is formed inside the bubble that moves away from the 
free surface and hits the opposite bubble wall, while a pronounced spike is formed in the free 
surface that moves away from the bubble jet, Fig 2a. When bubble interaction with a solid 
wall is considered the liquid jet that is formed inside the bubble is directed towards or away 
from the wall depending on the ratio γ between, the initial distance from the bubble’s center 
of mass to the free surface and the bubble maximum radius, Figs 2b,2c. These findings have 
been experimentally [11, 60] verified and instigated scientific interest in jet formation and 
impact. More recently intensified CCD camera recordings have shown that most of the 
cavitation damage occurs peripherally around the point where the bubble collapses near the 
solid surface, as a result of the interaction between the jet and the shock wave that is formed 
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after collapse [60]. This has stimulated further research on the details of bubble collapse and 
jet formation. It is known that after collapse the bubble rebounds to a larger radius, which is 
overpredicted by numerical simulations [59]. As a result the issue of introducing damping 
mechanisms in the bubble model was raised. Indeed this issue was addressed by means of a 
front tracking technique [61] that focused on the effect of viscous dissipation. It was seen that 
jet impact velocity was decreased as viscosity increases whereas impact is impossible below 
a certain threshold value for Re. Nevertheless, bubble rebound shapes obtained when collapse 
takes place are very similar to those predicted by the boundary integral method. Finally, the 
importance of liquid compressibility in refining collapse dynamics and shock formation is 
stressed. More recently 3D extensions of the boundary element methodology have been 
developed [62] for the simulation of the interaction between a growing bubble, possibly due 
to an underwater explosion, and a free floating or rigid structure, with very good agreement 
with experimental measurements of bubble shapes ant periods. 

 
 
 
 
 
 
 
 
 

Figure 2: Bubble collapse (a) near a free surface, (b) far from a solid surface, (c) near a solid 
surface and (d) due to a radial disturbance on an initially oblate bubble. Figure 2a is 

reproduced from [12], Figures 2b,c from [59] and Figure 2d from [10]. 
 

Remarkable agreement with experimental observations has been achieved in boundary 
integral calculations of growth and detachment of a bubble from a submerged needle [63]. In 
a different context, finite element simulations combined with a quasi-elliptic mesh generation 
scheme provide a useful accuracy check on dynamic surface tension measurements from 

(a) (b)

 

(c) 
 

(d)

γ=1 
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supported bubbles [64]. A hybrid finite element approach was adopted that utilizes a 
combination of quasi-elliptic mesh generation [52] near the interface with algebraic mesh 
generation [49] far from it, in order to accommodate the severe accuracy requirements around 
the deformed bubble interface. In this case departure from sphericity or hydrodynamic effects 
may cause significant deterioration in the reliability of measurements. It should be noted, that 
in both the above flow situations bubble deformation is not nearly as severe as those observed 
in cavitation studies.  

Volume oscillations of a bubble, as predicted by the Rayleigh-Plesset theory, are also 
known to become unstable and exhibit shape oscillations that reduce the validity of the 
assumption of spherosymmetry and that also may lead to bubble break-up depending on the 
intensity of the initial disturbance. That was first pointed out by Plesset [65] for inviscid 
oscillations and later on by Prosperetti [7] when weak viscous effects are included. In 
particular, a threshold amplitude is established beyond which different spherical harmonics 
grow, absorb energy from the primary volume oscillation and eventually dominate the 
dynamics while deforming the bubble shape. A Floquet type analysis reveals a phase diagram 
[66] regarding shape instability in the (R0, PA) space, that is dominated by the second 
Legendre mode, P2(cosθ). A prediction for the amplitude threshold for parametric instability 
to take place, valid for small amplitude oscillations and weak viscous effects, is provided in 
[8] as a function of, Re, the natural frequency of the shape mode, ωn, and the frequency of 
volume oscillations Ω0, 

( ) ( )( ) ( )
1 / 2

2

0 n2
n

2 12 2n 1 n 2 2
4n 1 Re

⎡ ⎤ε < + + + Ω − ω⎢ ⎥− ω ⎣ ⎦
. (41) 

In the above formula surface tension is used in order to render time and velocity 
dimensionless, ( )2

0Re R /= σ ρν , while Ω0 denotes the dimensionless frequency of radial 
oscillations. As the amplitude of the initial pressure disturbance, PA, increases the mode of 
instability switches to the Rayleigh-Taylor instability that is related to large positive radial 
accelerations and occurs near the minimum bubble radius. Another issue of great scientific 
and practical importance is that of coupling between shape and volume oscillations. When the 
bubble is forced away from resonance and the shape oscillations are either subharmonic, 

n 02ω = ω , or synchronous, n 0ω = ω , with the radial oscillation, then shape oscillations are 
excited, on an O(ε-1) time scale, with a frequency that is slaved to that of the radial motion 
[67]. When the forcing frequency is close to the natural frequency for volume oscillations 
then if the radial and shape modes are in exact two-to-one resonance the mixed motion is 
strictly periodic and is stable to axisymmetric perturbations [8]. In the presence, however, of 
a certain amount of detuning between them there is a range of forcing frequencies for which 
there is constant exchange of energy between the radial and the shape mode that may even 
lead to chaos [8]. These are interesting resonance phenomena that bear significance in 
establishing the appropriate range for spherosymmetric oscillations to exist in the context of 
many physical phenomena, most notably sonoluminescence, but also in understanding the 
ambient sound production in the upper ocean, Longuet-Higgins [68].  

An effort to numerically investigate the above phenomena in the limit of potential theory 
was carried out in [9,10] in the presence of isotropic and non-isotropic pressure forcing, via 
the boundary integral and the spectral method. Indeed coupling effects were identified to 
exist for the appropriate frequency range, even when higher harmonics than the 2nd were 
examined in which case small amplitude theory is of limited value. Strong departures from 
the Rayleigh-Plesset theory were also identified at large disturbance amplitudes. In fact, 
mode interaction was seen to lead to break-up of an initially oblate spheroid bubble via 
formation of a toroidal bubble, Fig 2d, when the disturbance amplitude is increased beyond 
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the limit of weakly nonlinear theory. It should also be noted that the superior efficiency of the 
boundary integral over the spectral method in capturing large amplitude oscillations 
involving higher shape modes, was ascertained.  

The appearance of shape instabilities as a result of isotropic pressure disturbances was 
examined in [41,42] via the boundary integral method in the context of inviscid and 
axisymmetric bubble-bubble interactions. When a small amplitude, O(ε), step change in 
pressure, or a sinusoidal pressure disturbance with an off-resonance frequency ωf, is applied, 
subharmonic resonance is almost invariably observed between radial oscillations and the 
shape mode for which the condition n 02ω = ω  or n f2ω = ω  holds, as predicted in [67]. The 
bubble shape reflects the excitation of the appropriate mode, e.g. 9th and 10th modes for the 
left bubble in Fig 3, on an O(ε-1) time scale. When the disturbance amplitude is further 
increased the two bubbles are seen to accelerate as a result of the secondary Bjerknes forces 
between them, as an O(ε2) effect. The forces exerted on the two bubbles are equal in 
magnitude but opposite in direction and consequently the smaller bubble experiences a larger 
acceleration. As the acceleration of either one of the bubbles increases beyond a certain 
threshold value, identified as a Bond number relating acceleration to surface tension, a 
Rayleigh-Taylor type instability arises and the bubble shape exhibits strong anisotropy which 
in extreme cases takes the form of spherical-cap shapes. For instance, in Fig 3 the right 
bubble is smaller and consequently accelerates faster than the left one and acquires a 
spherical-cap shape. Such shapes are characterized by an almost spherical front, whereas the 
side facing away from the direction of acceleration exhibits areas of small curvature and 
shape oscillations. There is also indication of bubble break-up and formation of satellite 
bubbles. This is an interesting result that might bear some significance in the rising bubble 
problem where shape oscillations are associated with path instabilities. Of course it remains 
to be seen how weak viscous effects will affect this behaviour. 

Figure 3: Bubble-bubble interaction after a step change in the atmospheric pressure; 
P∞=PSt(1+0.3), R02/R01=0.8, γ=D/R01=4, R01=1 mm (reproduced from [42]). 

 
The effect of weak viscous dissipation on bubble collapse and break-up was recently 

examined in an investigation of the dynamics of elongated bubbles under negligible or large 
internal overpressures [17,18]; intensity of elongation is measured via the ratio, S, between 
the bubble equilibrium radius and the long axis of the ellipsoid produced by elongation. Thus, 
a threshold initial elongation was discovered below which the bubble performs oscillations 
with energy being exchanged between the zeroth and the 2nd Legendre modes and the bubble 
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eventually relaxing to its spherosymmetric equilibrium state. For more intense elongation two 
fast jets are formed that propagate in opposite directions along the axis of symmetry and meet 
at the equatorial plane forming a microbubble surrounded by a larger bubble of toroidal 
shape, Figs 4a,b,c. Evidence was also presented, [17], that during the final stages of collapse, 
surface tension and convection balance each other and produce a universal interdependence 
between the time and space scales [69]. Viscosity decelerates the speed of the jet and 
produces a critical Re below which the jets do not touch [17].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Inviscid simulation of an elongated bubble at atmospheric pressure (a) in the 
beginning of the motion, (b) during jet formation and (c) during collapse (R0~5µm, S=0.6, 

reproduced from [17]); (d) with internal overpressure of 40 atm and severe elongation 
(S~0.34, reproduced from [18]) 

 
The case with large internal overpressure was also investigated, [18], since it is relevant to 

sonoluminescence experiments with laser bubbles [70]. In this flow arrangement aspherical 
bubble collapse is observed, yet the bubbles luminesce at the bubble site of jet impact, an 
effect that was conjectured to be due to the formation of tiny microbubbles. Additional 
evidence in support of this supposition is provided by the simulations carried out in [18], 
when weak viscous effects are included and large internal overpressures are considered in 
conjunction with very large initial elongations. Inviscid simulations reveal a collapse mode 
where the incoming jets are deflected and hit the bubble walls. Including weak viscous 
dissipation favors a collapse mode similar to the case of zero internal overpressure, in the 
sense that the regions near the two poles accelerate and eventually meet at the equatorial 
plane, before they turn and hit the bubble walls, to form a tiny microbubble surrounded by a 
larger toroidal bubble, Fig 4d. Currently, these simulations are extended to account for the 
effect of elasticity on the bubbles interface, as required for the investigation of the dynamic 
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behaviour of contrast agents. An interesting parallelism between parametric instability of 
bubbles and buckling of spherical shells is under investigation in this context, [71]. 

The effect of secondary Bjerknes forces on the translational motion of the bubbles was 
also examined in [41,42] and the classical Bjerknes theory, wherein bubbles attract or repel 
each other depending on whether they oscillate in or out of phase, was verified. In addition, 
conditions for the formation of stable bubble pairs were sought after, in the light of the theory 
by Doinikov & Zavtrak [72]. It the latter study, it was shown, for bubbles insonated by a 
forcing frequency above their resonance frequencies, that as their distance decreases a point 
is reached beyond which their mutual force changes sign becoming repulsive until they get 
far enough for attraction to prevail again and the cycle to be repeated. Boundary integral 
simulations performed in [41,42] verified that this is indeed the case for small amplitude 
oscillations. This effect cannot be predicted by classical Bjerknes theory since it is valid 
when the distance between the bubbles is infinitely large. Doinikov & Zavtrak explained it by 
accounting for the multiple scattering interaction between the bubbles in the context of linear 
theory, in terms of the variation of the two natural frequencies as the distance between the 
bubbles decreases. This is indeed the case when the two bubbles are driven above resonance. 
However, this argument cannot explain the change in the sign of the force at small distances 
when the forcing frequency falls in the range of the two natural frequencies since then, by 
linear theory [41], as their distance decreases the eigenfrequency of the larger bubble 
decreases while that of the smaller increases and the forcing frequency always remains within 
their interval. More recently, a generalized theory was presented, [73], utilizing the ‘transition 
frequencies’, namely those for which there is a phase difference of π/2 between a bubble’s 
pulsations and the external field. Thus, it was seen that a third transition frequency exists for 
each bubble, apart from the two natural frequencies for radial oscillations of the two 
individual bubbles, that collapses to one of the natural frequencies as the distance between 
them tends to infinity. In a subsequent article [74] the same investigator conducted a 
numerical study on the axisymmetric interaction of two bubbles in a viscous liquid, 
considering compressibility effects in both phases. A hybrid advection scheme was employed 
in conjunction with a multi-step integration technique and a front tracking approach for the 
location of the interface. The simulations, conducted for the case of small disturbance 
amplitude, show evidence that there is an additional transition frequency. Nevertheless, 
further research is required in order to establish the validity and practical significance of its 
effect.  
 
IV.2 Bubble interaction with an external flow 

Research in this area investigates bubble interaction with an external flow, e.g. shear or 
elongational among others, and this includes the rising bubble problem where it is the bubble 
itself that undergoes rectilinear motion, at least for small radii before path instabilities arise 
[28]. In this class of problems bubble oscillations are not of primary interest. Rather, the 
effect of viscous dissipation on the wake structure is of interest, both as a fundamental 
problem that distinguishes interfaces where slip is allowed from solid surfaces, but also as a 
means to obtain useful predictions for the drag and lift coefficients that can be used as input 
in larger models for bubbly flow. As an additional problem of fundamental importance the 
appearance of path instabilities in rising bubbles should be singled out, since it is intimately 
associated with interesting dynamic phenomena such as shape oscillations and wake stability. 
As a result of the nature of the problem, full Navier-Stokes solvers have been developed for 
its investigation, typically coupled with elliptic mesh generation in order to capture possible 
deformations of the bubble surface. A first step in this direction was taken by Ryskin & Leal 
[22,23], who developed a finite difference code coupled with a boundary fitted mesh 
generation scheme to study the buoyancy driven motion of a bubble in a quiescent liquid. In 



 18

this fashion they were able to calculate steady axisymmetric shapes of bubbles for a wide 
range of Re and We numbers (Re<200, We<20). Some of the experimentally observed 
shapes, in the range of small and intermediate Re, were reproduced but non-existence of 
steady axisymmetric shapes leading to spherical-cap shapes could not be established. It 
should be pointed out that the shapes obtained as Re increased where quite similar with the 
steady shapes obtained by Miksis et al. [21] with the boundary integral method including 
weak viscous effects. A very important finding of the full Navier-Stokes solution, however, 
that cannot be captured by weak viscous analysis is the discovery of flow separation behind 
the bubble for the intermediate range of Re and large enough We=2ρU2R0/σ numbers, Fig 5.  
 

 
Figure 5: Comparison of experimental measurements (Hnat & Buckmaster, Phys. Fluids 19, 
1976) and numerical predictions for the shape and the wake behind a rising bubble (Re~20, 

We~15, reproduced from [23]). 

Figure 6: Drag coefficient CD as a function of Re, (a) χ=1.5 and (b) χ=1.75; _______ Moore’s 
theory, ___•___ numerical results (reproduced from [47]). 

 
It was already known from Moore’s early work, [20], that the boundary layer around a 

spherical bubble does not separate. Assuming that no separation takes place, the same 
investigator proceeded in a later study and obtained an expression for the drag coefficient 
around spheroid bubbles  

( ) ( ) 0
D D1 / 2 1 / 2

2 2
0

H 2R U48 1 Drag cC G 1 o , Re , C ,
1Re Re Re aU R
2

χ⎡ ⎤ ρ⎛ ⎞= χ + + = = χ =⎢ ⎥⎜ ⎟ µ⎝ ⎠⎣ ⎦ ρ π
 (42) 
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with χ denoting the ratio of the cross stream to the parallel axis of the spheroid, [75]. A 
question was then raised regarding the lower bound on Re for the validity of this assumption 
and how this bound changed as the bubble shape became more and more oblate. This issue 
was settled by Dandy & Leal [48], by employing the numerical methodology developed by 
Ryskin & Leal, wherein it was shown that a threshold value of Re exists below which 
standing eddies are formed behind the bubble, in marked disagreement with what is known 
from solid boundaries. In fact, formation of eddies is restricted within a specific interval of 
Re and is quite distinct from boundary layer separation. Recent developments of elliptic mesh 
generation techniques [45,46] allowed simulations to proceed to higher Re. In particular, 
Magnaudet et al. [25] and Blanco & Magnaudet [47] utilized a finite volume approach with 
an improved elliptic mesh generation scheme to solve viscous flow around, a spherical 
bubble recovering Moore’s theory for Re>50, and around an ellipsoidal bubble of fixed shape 
for Re up to 1000, respectively. In the latter study it was shown that as the oblateness of the 
bubble increases the threshold in Re beyond which Moore’s theory is correct increases as 
well, Fig 6. The evolution of the wake structure was recovered for the range of Re numbers 
over which it exists, and the growth and eventual disappearance of its size over the same 
region was clearly illustrated, Fig 7. Interestingly enough it was discovered that even though 
the shape of the bubble had a significant effect on the drag coefficient the standing eddy did 
not have any noticeable influence.  

Blanco & Magnaudet [47] used a dynamic code and investigated the possibility for 
unsteadiness in their results also, which was not possible. A similar time dependent 
axisymmetric study, based on a boundary fitted mesh, was conducted by Takagi et al. [24]. 
The numerical simulations of the latter investigators suggest the onset of axisymmetric shape 
oscillations leading towards three dimensional path instabilities. Recent experimental 
observations [28] obtain the critical values of Reynolds for zig-zag or spiral paths to arise and 
provide the bubble shapes and terminal velocities as a function of the radius of rising bubbles. 
In fact, the latter look quite similar with graphs obtained in [21] with the boundary integral 
method including Moore’s prediction for the viscous drag coefficient. It should also be noted 
that zig-zag paths seem to arise as an instability of rising bubbles with almost spherical shape 
[28] in which case standing eddies do not exist. In fact as the bubble size increases, R0>4 
mm, experimental observations [27] indicate that vortex shedding frequency is locked to the 
frequency of shape oscillations. In view of the above findings it is the author’s opinion that 
an axisymmetric time dependent solution via the boundary integral method, one that also 
accounts for weak viscous effects, will provide the proper steady bubble shapes, but also 
spherical-cap shapes exhibiting shape oscillations in the upstream region. Steady shapes can 
be used for carrying out a stability analysis that allows for three-dimensional fully viscous 
perturbations. In this framework the bifurcation points that lead to path instabilities may be 
provided. Owing to the distorted shape as Re increases the quasi-elliptic mesh generation 
approach will be favorable for providing the proper resolution of the boundary layer and 
wake regions around the bubble that will emerge as part of the bifurcating solutions. On the 
other hand, the onset of spherical-cap shapes, and the shape oscillations associated with them 
can be used as a means to capture the critical value of Reynolds for path instabilities of large 
bubbles. In all likelihood, in this case the behaviour of the wake is not needed for capturing 
the onset of path instability. Rather, this is a result of neighboring shape mode interaction that 
triggers the erratic translational motion of the bubble in the presence of temporal and spatial 
phase drift. This mechanism can be predicted in the context of potential theory as was first 
implied by Saffman [31] and rigorously shown by Benjamin & Ellis [32]. More recently, 
Feng & Leal [76] extended these ideas to include the effect of resonance between the 
interacting shape modes and the forcing frequency, while Doinikov [77] accounted for the 
combined effect that shape oscillations and translation may have on volume pulsations and 
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discussed its implications on ambient oceanic noise, [68]. A three-dimensional boundary 
integral type simulation would be very useful in examining these effects in more detail.  

In a different context, three-dimensional dynamic simulations of single bubble interaction 
with external flows using an elliptic mesh generation scheme have been carried out [26], in 
order to obtain accurate predictions of the drag and lift coefficients over a wide parameter 
range. Agreement with previous asymptotic formulas is validated and, more importantly, 
improvements of previously available empirical correlations are derived. Such efforts 
constitute a very useful first step in producing the necessary interaction forces for numerical 
simulation of bubbly flows.  
 

 
Figure 7: The flow at the rear of an ellipsoidal bubble of aspect ratio χ=1.75 (dashed lines 

delimit the separation region) (a) Re=60; (b) Re=75; (c) Re=100; (d) Re=150; (e) Re=200; (f) 
Re=300; (g) Re=350; (h) Re=400 (reproduced from [47]). 

 
The method of Galerkin finite elements coupled with the fixed spine method [49] was 

recently applied, [50], in order to capture the physics of bubble deformation inside a 
viscoelastic filament that undergoes stretching with a constant pulling velocity. Such a flow 
arrangement is believed to arise in the process of fibrillation of block copolymer adhesives. 
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The effect of material viscoelastic properties on bubble dynamics is presented and the role of 
bubble growth and deformation on the bulk material properties is discussed.  

 
IV.3 Numerical Experiments with Rising Bubbles 

It should be pointed out that direct numerical simulations of bubble dynamics can be 
performed with the numerical techniques described in sections III.1 and III.2. However, we 
reserve the term numerical experiments for the interface tracking schemes presented in III.3 
since they can capture more complicated topological changes such as the post break-up or 
post coalescence flow structures. Simulations on bubbly flows and bubble merging have been 
carried out in the past, see for example [33, 78]. Nevertheless, most of the available 
numerical data have been obtained from simulations of the rising bubble problem which has 
become a test case for direct numerical simulations with deforming interfaces, due to the 
wealth of theoretical, experimental and numerical studies with more conventional numerical 
methodologies that are available for direct comparison.  

 
Figure 8: Stream lines for a two-dimensional steadily rising bubble under various Eo and M 
numbers, ρ/ρb=40 and. Top row, Eo=1; (a) µ/µb=88 and M=10-7; (b) µ/µb=156 and M=10-6; 
(c) µ/µb=277 and M=10-5; (d) µ/µb=493 and M=10-4. Bottom row, Eo=10; (a) µ/µb=88 and 

M=10-4; (b) µ/µb=156 and M=10-3; (c) µ/µb=277 and M=10-2; (d) µ/µb=493 and M=10-1 
(reproduced from [33]). 

 
Early studies in this field concentrated on simulations of two-dimensional bubbles and 

parameter ranges, e.g. viscosity µ/µb and density ρ/ρb ratios, Morton and Eotvos numbers, 
that were somewhat restrictive, [33,34,35,57,79]. As was mentioned before, in the context of 
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the rising bubble problem gravitational forces provide the characteristic velocity in which 
case,  

( )22
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that depends solely upon the properties of the surrounding medium. Bhaga & Weber [80] 
presented a graphical correlation that mapped the (Re, Eo) space into different regimes 
according to the dynamic behaviour of bubbles rising in different quiescent liquids. This 
semi-empirical map provides a means for comparing numerical simulations against well-
established knowledge in this field.  

Previous numerical simulations by the boundary integral method [21] and by boundary 
fitted coordinates [22,23,24,81] have recovered spherical and oblate spheroid or ellipsoidal 
steady shapes. In the latter two cases, [24,81], there is evidence from axisymmetric dynamic 
simulations, that shape oscillations arise and trigger path instabilities. Surface tracking 
techniques [33,34,35,57] originally tried to solve two dimensional models in order to recover 
the wake structure revealed by boundary fitted mesh generation techniques, most notably the 
results of Ryskin & Leal [22,23]. This had encouraging results [33], Fig 8, hence the method 
has been extensively applied in axisymmetric and three-dimensional geometries [33, 78] 
albeit for a relative narrow parameter range, in order to investigate its qualitative behaviour 
and its convergence upon mesh refinement. More recently, a combination of the level-set and 
the volume of fluid methods on an adaptive grid has been applied on three-dimensional 
simulations of rising bubbles [36] over a considerable range of the Bhaga & Weber diagram 
with impressive findings. In particular, the dynamic evolution of an initially spherical bubble 
that rises in a quiescent fluid into an ‘oblate spheroid’, ‘oblate ellipsoidal disk-like and 
wobbling’ and ‘oblate ellipsoidal cap’ was captured for the range of Re and Eo predicted in 
[80]. In the low M and intermediate Eo region zig-zag and spiral paths are obtained for 
bubble shapes that appear to be close to the spherical and ellipsoidal shapes observed in [28], 
Fig. 9. Finally, depending on the initial conditions an initially spherical or ‘oblate ellipsoidal 
cap’ bubble was seen to evolve into a toroidal or a spherical-cap bubble, respectively, in the 
low M and large Eo regime, Fig. 10. The appearance of such shapes has been anticipated by 
previous experimental and numerical investigations as well as their dependence on initial 
conditions. In the case of spherical-caps the simulations clearly indicate the formation of 
satellite bubbles behind the bubble in accordance with experimental observations. Based on 
the above findings there is evidence that this class of numerical methods is reaching its 
maturity and can provide data that we would like to get from ‘numerical experiments’. 

The above simulations suffer from the drawback that they all ignore compressibility of the 
material inside the bubble. Of course, this is not an important issue when the problem of a 
rising bubble is studied, where bubble oscillations are not expected to play such a central 
role, at least when Re is not very large for shape oscillations to occur. Nevertheless, there 
have been developments in this direction both in the context of the surface tracking 
techniques [55] but also in the emerging field of Lattice-Bolzmann simulations [79] where 
compressibility is inherently included in the model. Such efforts have not yet reached the 
point where they can be directly compared against existing experimental or numerical 
studies. However, they are considered as promising alternatives owing to their fundamental 
nature.  
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Figure 9: Examples of zig-zag and spiral bubble motion at low Morton numbers, 

Mo=1.9x10-10; (a) Re=700, Eo=1.9 and (b) Re=1000 and Eo=7.5 (reproduced from [36]). 
 

 
Figure 10: Numerical results for eo=182 and m=9.9x10-6 depending on the initial conditions 

(reproduced from [36]). 
 
V. CONCLUSIONS 

As an overall remark on the contribution of numerical techniques to our knowledge 
regarding bubble dynamics, it should be stressed that they have significantly enhanced our 
understanding of fundamental issues such as interfacial instabilities, bubble collapse and 
break-up and the wake structure behind deformed free surfaces. In addition, carefully 
designed numerical experiments have recently emerged as an alternative to experiments for 
flow situations that are not easily controlled in the laboratory, either by incorporating 
numerically obtained correlations of the drag and lift coefficients in models of bubbly flows 
or by utilizing modern surface tracking and reconstruction schemes.  

(a) (b) 
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In particular, the boundary integral method seems to be more efficient when isotropic 
disturbances are applied or when specific details are demanded of severely deformed 
interfaces. Thus, boundary elements have been used to capture the nature of bubble collapse 
near a solid or a free boundary and to illustrate the importance of jet impact on the damaging 
effect of a cavitating bubble. The same methodology has been applied for the evaluation of 
the importance of available interfacial instability mechanisms, i.e. parametric and Rayleigh-
Taylor instabilities. The details of break-up of a bubble subjected to an acoustic disturbance 
or an initial elongation have also been monitored in the same fashion and the formation of 
satellite microbubbles has been pointed out along with their significance on 
sonoluminescence. The same approach has afforded the investigation of universalities in the 
final stages of bubble break-up as an extension of existing theories for drop pinch-off. 
Inclusion of weak viscous effects that account for the normal viscous stress and viscous 
pressure correction has significantly extended the range of validity of the boundary integral 
method for problems involving free surfaces.  

When the wake structure is needed and its impact has to be accounted for on the path of a 
bubble undergoing translational motion or on the drag and lift coefficients of a bubble, then 
resorting to a full Navier-Stokes solver is necessary. This guarantees applicability over a wide 
range of Reynolds provided the shape deformation of a moving bubble is captured at the 
same time. This has led to the development of a number of elliptic mesh generation schemes 
that provide boundary fitted coordinates that follow the shape of the bubble and preserve 
orthogonality properties. In this fashion the nature of standing eddy formation behind 
deformed interfaces has been understood and the range of Reynolds over which it occurs has 
been accurately predicted. Three-dimensional simulations have been performed for bubbles 
interacting with different types of external flows with important results from the fundamental 
perspective but also from a more practical point of view, regarding the production of semi-
empirical correlations for drag and lift coefficients that can be utilized in bubbly flow models. 
Application of quasi-elliptic mesh generation schemes that satisfy conditions of smoothness 
and density of the coordinate lines seems to be a promising adjustment that will allow more 
accurate description of highly deformed interfaces.  

Until recently use of boundary fitted coordinate systems seemed to be the only way to 
perform direct numerical simulations of bubble dynamics. The appearance of surface tracking 
techniques, e.g. front-tracking, volume-of-fluid and level-set methods, has extended the range 
of applicability of numerical simulations by affording simulation of severe topological 
changes such as coalescence or the formation of satellite bubbles. As a benchmark problem 
that of the bubble that rises in an otherwise quiescent fluid has been employed in order to test 
the validity of these methods, with very encouraging results thus far. Situations with spherical 
bubbles, oblate ellipsoidal, wobbling, toroidal or spherical-cap shape bubbles have been 
successfully resolved. At the current stage of their development these methods are now 
required to systematically provide useful details of flow situations that cannot be otherwise 
predicted and for the appropriate material properties. 

In the author’s opinion numerical simulations have reached a stage where we can get 
specific answers to specific and realistic problems. More importantly, besides existing areas 
of research there are new exciting fields that require proper modeling of bubble dynamics, as, 
for instance, the application of contrast agent imaging in modern echocardiography. What is 
now required is the ability to employ different techniques depending on the type of answer 
we need. For example, in the rising bubble problem we need to be able to numerically 
reproduce the exact regimes corresponding to the appearance of a certain type of bubble 
shape. This has been done experimentally [27,28,80] and there is every indication that it will 
soon be done numerically [36]. Extensive use of parallel computing is expected to accelerate 
this process. However, we also need to know the precise mechanism behind each transition. 
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In particular, it still has to be unequivocally determined (a) what is the parameter range for 
which the wake imposes its dynamics on the bubble and (b) what is the parameter range for 
which the opposite happens. There are indications that for small bubbles the wake determines 
the dynamics whereas for larger bubble shape oscillations set in and they trigger wake 
instabilities. This is something that can be determined in the light of a theoretical approach 
that will employ simplified models specifically designed to investigate a specific mechanism. 
Nevertheless, this has been made possible only because there has been a built up of 
knowledge on this problem, based on extensive numerical and experimental studies that point 
out the appropriate parameter range and the appropriate natural forces for the theory to focus 
on. Consequently, we need to be able to exploit the synergies that arise from modern 
computational and theoretical advances in the field of bubble dynamics in order to obtain 
answers to physical problems of fundamental importance but also to create software that can 
be useful in modern technical applications.  
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